Algorytmy. Ćwiczenia
34,90 zł
Projektowanie systemów rozproszonych. Wzorce i paradygmaty dla skalowalnych, niezawodnych usług
−30%27,93 zł
PHP 7. Algorytmy i struktury danych
59,00 zł
Java. Kompendium programisty. Wydanie X
179,00 zł
Opus magnum C++11. Programowanie w języku C++ (komplet)
149,00 zł
Uczenie maszynowe z użyciem Scikit-Learn i TensorFlow
89,00 zł

Wszystkie artykuły

Poniższa lista zawiera wszystkie artykuły opublikowane na stronie, posortowane alfabetycznie. Aby przeglądać strony tematycznie, przejdź do kategorii głównej.

REKLAMA

Zobacz też

Algorytm Johnsona – algorytm służący do wyznaczania najkrótszych ścieżek pomiędzy każdą parą wierzchołków w grafie. Algorytm wykorzystuje algorytm Dijkstry i algorytm Bellmana-Forda. Dopuszcza krawędzie o ujemnych wagach, o ile nie tworzą ujemnych cykli.

Złożoność czasowa algorytmu (jeśli algorytm Dijkstry zostanie zaimplementowany z wykorzystaniem kopca Fibonacciego) to O(n2log n + en), gdzie n jest liczbą wierzchołków, a e jest liczbą krawędzi. Dla grafów rzadkich (ze stosunkowo małą liczbą krawędzi) jest to złożoność lepsza, niż złożoność algorytmu Floyda-Warshalla.

→ Czytaj całość

Algorytm Helda-Karpa (czasami określany jako algorytm Bellmana-Helda-Karpa) – algorytm służący do rozwiązywania problemu komiwojażera. Jest to algorytm dokładny oparty na programowaniu dynamicznym. Algorytm ma złożoność czasową O(n22n) i złożoność pamięciową O(n2n). Jest to co prawda złożoność gorsza od wielomianowej, ale algorytm ten jest znacznie lepszy od algorytmu sprawdzającego wszystkie warianty (złożoność czasowa O(n!)).

→ Czytaj całość

K-opt, algorytm k-optymalny – algorytm lokalnej optymalizacji wykorzystywany przy rozwiązywaniu problemu komiwojażera. Algorytm ten nie służy do samego wyznaczania trasy, a jedynie do ulepszania jej. Najprostszą wersją tego algorytmu jest algorytm 2-optymalny.

→ Czytaj całość
Polityka prywatnościKontakt