Problem komiwojażera (ang. travelling salesman problem, w skrócie TSP) – problem obliczeniowy polegający na poszukiwaniu w grafie takiego cyklu, który zawiera wszystkie wierzchołki (każdy dokładnie raz) i ma jak najmniejszy koszt. Bardziej formalnie, problem komiwojażera polega na poszukiwaniu w grafie cyklu Hammiltona o najmniejszej wadze.
Problem ma liczne zastosowania w życiu codziennym. Najlepszym przykładem jest praca kuriera, który musi wyjechać z magazynu, zawieźć przesyłki w różne miejsca i wrócić do magazynu.
Nie jest znany efektywny (tj. działający w czasie co najwyżej wielomianowym) algorytm dający gwarancję znalezienia optymalnego rozwiązania problemu komiwojażera. Problem ten jest bowiem zaliczany do klasy problemów NP-trudnych. W wersji decyzyjnej (czy istnieje cykl o długości mniejszej od x) problem jest zaliczany do klasy problemów NP-zupełnych. W grafie pełnym mającym n wierzchołków liczba możliwych cykli Hammiltona wynosi aż (n-1)!/2. W praktyce sprawdzenie wszystkich możliwości jest zatem wykonalne tylko dla niewielkiej liczby wierzchołków.
Wybrane algorytmy wykorzystywane do rozwiązywania problemu komiwojażera zaprezentowano w poniższej tabeli. Przez algorytm dokładny rozumiemy algorytm gwarantujący znalezienie rozwiązania optymalnego.
Algorytm | Dokładny | Złożoność czasowa |
---|---|---|
Sprawdzenie wszystkich wariantów | Tak | O(n!) |
Algorytm Helda-Karpa | Tak | O(n22n) |
Algorytm najbliższego sąsiada | Nie | O(n2) |
Algorytm najmniejszej krawędzi | Nie | O(n2log n) |
Algorytm RNN | Nie | O(n3) |
Do rozwiązywania problemu komiwojażera można wykorzystać również algorytm genetyczny (przykład). Rozwiązanie uzyskane za pomocą algorytmów niedokładnych można ulepszać korzystając z metod lokalnej optymalizacji. Przykładem takiej metody jest algorytm 2-optymalny będący najprostszym wariantem algorytmu k-optymalnego.
Problem komiwojażera ma liczne modyfikacje i problemy pokrewne. Jednym z nich jest problem marszrutyzacji, w którym wierzchołki mają znaleźć się nie w jednym cyklu, a w kliku osobnych.
Dodano: 1 października 2016 13:08, ostatnia edycja: 7 sierpnia 2017 11:23.
Algorytm Helda-Karpa (czasami określany jako algorytm Bellmana-Helda-Karpa) – algorytm służący do rozwiązywania problemu komiwojażera. Jest to algorytm dokładny oparty na programowaniu dynamicznym. Algorytm ma złożoność czasową O(n22n) i złożoność pamięciową O(n2n). Jest to co prawda złożoność gorsza od wielomianowej, ale algorytm ten jest znacznie lepszy od algorytmu sprawdzającego wszystkie warianty (złożoność czasowa O(n!)).
Drzewo decyzyjne – metoda graficzna wspierająca podejmowanie decyzji, jak również model stosowany w uczeniu maszynowym do klasyfikacji lub regresji.
Podejmowanie decyzji z wykorzystaniem drzewa decyzyjnego odbywa się poprzez odpowiadanie na kolejne pytania. Pojedyncze pytanie musi być proste i dotyczyć jednego konkretnego atrybutu. Pytania ułożone są w strukturę hierarchiczną – wybór następnego pytania (lub końcowej decyzji) zależy od odpowiedzi udzielonej na poprzednie.
Proste drzewo decyzyjne może być w pełni zaprojektowane już przy tworzeniu programu i zaimplementowane w kodzie np. za pomocą instrukcji warunkowych. W uczeniu maszynowym drzewo jest generowane automatycznie na podstawie próbek ze zbioru uczącego.
Quicksort, sortowanie szybkie – algorytm sortowania działający w średnim przypadku w czasie liniowo-logarytmicznym. Algorytm jest oparty na metodzie dziel i zwyciężaj. Nie jest to algorytm stabilny ani wykazujący zachowanie naturalne, jednak ze względu na efektywność jest algorytmem bardzo popularnym.