Problem komiwojażera

Cykl Hammiltona (1) Przykładowy cykl Hammiltona
Algorytm najbliższego sąsiada animacja (2) Rozwiązanie problemu komiwojażera za pomocą algorytmu najbliższego sąsiada

Problem komiwojażera (ang. travelling salesman problem, w skrócie TSP) – problem obliczeniowy polegający na poszukiwaniu w grafie takiego cyklu, który zawiera wszystkie wierzchołki (każdy dokładnie raz) i ma jak najmniejszy koszt. Bardziej formalnie, problem komiwojażera polega na poszukiwaniu w grafie cyklu Hammiltona o najmniejszej wadze.

Problem ma liczne zastosowania w życiu codziennym. Najlepszym przykładem jest praca kuriera, który musi wyjechać z magazynu, zawieźć przesyłki w różne miejsca i wrócić do magazynu.

Nie jest znany efektywny (tj. działający w czasie co najwyżej wielomianowym) algorytm dający gwarancję znalezienia optymalnego rozwiązania problemu komiwojażera. Problem ten jest bowiem zaliczany do klasy problemów NP-trudnych. W wersji decyzyjnej (czy istnieje cykl o długości mniejszej od x) problem jest zaliczany do klasy problemów NP-zupełnych. W grafie pełnym mającym n wierzchołków liczba możliwych cykli Hammiltona wynosi aż (n-1)!/2. W praktyce sprawdzenie wszystkich możliwości jest zatem wykonalne tylko dla niewielkiej liczby wierzchołków.

Wybrane algorytmy

Wybrane algorytmy wykorzystywane do rozwiązywania problemu komiwojażera zaprezentowano w poniższej tabeli. Przez algorytm dokładny rozumiemy algorytm gwarantujący znalezienie rozwiązania optymalnego.

Algorytm Dokładny Złożoność czasowa
Sprawdzenie wszystkich wariantów Tak O(n!)
Algorytm Helda-Karpa Tak O(n22n)
Algorytm najbliższego sąsiada Nie O(n2)
Algorytm najmniejszej krawędzi Nie O(n2log n)
Algorytm RNN Nie O(n3)

Do rozwiązywania problemu komiwojażera można wykorzystać również algorytm genetyczny (przykład). Rozwiązanie uzyskane za pomocą algorytmów niedokładnych można ulepszać korzystając z metod lokalnej optymalizacji. Przykładem takiej metody jest algorytm 2-optymalny będący najprostszym wariantem algorytmu k-optymalnego.

Problemy pokrewne

Problem komiwojażera ma liczne modyfikacje i problemy pokrewne. Jednym z nich jest problem marszrutyzacji, w którym wierzchołki mają znaleźć się nie w jednym cyklu, a w kliku osobnych.

Ocena: +4 Tak Nie
Liczba głosów: 4.

Dodano: 1 października 2016 13:08, ostatnia edycja: 7 sierpnia 2017 11:23.

REKLAMA

Zobacz też

Algorytm Kruskala – algorytm wyznaczający minimalne drzewo rozpinające. Algorytm ten wykorzystuje strategię zachłanną, zawsze zwraca rozwiązanie optymalne.

→ Czytaj całość

Kolejka (ang. Queue) – struktura danych, w której elementy pobierane są z początku, a dodawane na końcu. Z kolejki można zatem pobrać tylko ten element, który był dodany najwcześniej. Kolejka bywa określana również jako kolejka FIFO (z ang. First In, First Out), w odróżnieniu od kolejki LIFO, czyli stosu.

→ Czytaj całość

Metoda Otsu – algorytm służący do binaryzacji obrazu, czyli przekształcenia obrazu w odcieniach szarości do obrazu binarnego. Metoda ta realizuje progowanie globalne – dla całego obrazu wyznaczany jest jeden próg jasności, a następnie wszystkim pikselom jaśniejszym od tego progu przypisywana jest jedna wartość, a ciemniejszym druga.

Algorytm jest oparty na analizie histogramu. Przygotowanie histogramu polega na zliczeniu pikseli w każdym możliwym odcieniu (zazwyczaj liczba odcieni wynosi 256, gdyż tyle da się zakodować w jednym bajcie). Następnie należy sprawdzić każdy możliwy próg jasności i wybrać ten, dla którego wariancja międzyklasowa jest największa (lub suma ważona wariancji wewnątrzklasowych jest najmniejsza).

Jeśli obrazem wejściowym jest obraz kolorowy, można go łatwo sprowadzić do odcieni szarości. W przypadku kolorów zakodowanych w RGB najprostszym rozwiązaniem jest uśrednienie dla każdego piksela wartości wszystkich trzech kanałów.

→ Czytaj całość
Polityka prywatnościKontakt