Notacja dużego O

Wykresy funkcji (1) Wykresy funkcji: x2 (czarny), 50x+100 (czerwony) i 200log2x+1000 (zielony). Możemy zauważyć, że powyżej pewnej wartości x decydujące znaczenie ma rząd wieklości funkcji, a nie stałe współczynniki
REKLAMA Algorytmy i struktury danych z przykładami w Delphi
80,00 zł
Spring w akcji. Wydanie V
89,00 zł
Excel 2019 PL. Biblia
−30%90,30 zł
Wyrażenia regularne od podstaw
39,90 zł

Notacja dużego O – notacja przedstawiająca asymptotyczne tempo wzrostu, wykorzystywana do zapisywania złożoności obliczeniowej algorytmu. Za pomocą tej notacji zapisywany jest rząd wielkości funkcji wyrażającej liczbę operacji dominujących (w przypadku złożoności czasowej) lub rozmiar wymaganej pamięci (w przypadku złożoności pamięciowej) w zależności od liczby danych wejściowych.

Wykorzystując notację dużego O nie podajemy dokładnego wzoru funkcji, a jedynie jej najbardziej znaczący składnik, w dodatku z pominięciem stałego współczynnika. Przykładowo, funkcję postaci f(n)=5n2+20n+100 możemy zapisać jako O(n2). Zakładamy bowiem, że dla dostatecznie dużych n wpływ pomijanych elementów jest znikomy. Choć oczywiście dla małych n może się zdarzyć, że funkcja o gorszej złożoności będzie się wykonywała szybciej.

Weźmy dla przykładu funkcje f(n) = 1000n+2000 i g(n) = n2. Choć pierwsza funkcja ma pozornie bardzo duże stałe współczynniki, to dla n ≥ 1002 będzie ona przyjmowała wartości mniejsze. Im większe n, tym ta różnica będzie wyraźniejsza. Dla n = 10000 (w przypadku danych przetwarzanych komputerowo nie jest to wielka wartość) f(n) = 10002000 (ok. 10 mln), a g(n) = 100000000 (100 mln), czyli blisko 10 razy więcej.

Możliwe jest również wykorzystanie notacji dużego O dla funkcji wielu zmiennych. Wówczas zapis może wyglądać tak: O(v2e). Znajduje to zastosowanie np. dla algorytmów operujących na grafach, gdzie złożoność zależy zarówno od liczby wierzchołków, jak i liczby krawędzi w grafie.

Przykładowe rzędy złożoności

Przykładowe rzędy złożoności funkcji (posortowane rosnąco) to:

  • O(1) – złożoność stała,
  • O(logn) – złożoność logarytmiczna,
  • O(n) – złożoność liniowa,
  • O(nlogn) – złożoność liniowo-logarytmiczna,
  • O(n2) – złożoność kwadratowa,
  • O(nk), gdzie k jest stałą – złożoność wielomianowa,
  • O(kn), gdzie k jest stałą – złożoność wykładnicza,
  • O(n!) – złożoność rzędu silnia,

Przyjmuje się, że największą akceptowalną złożonością obliczeniową algorytmu jest złożoność wielomianowa. Istnieją jednak problemy obliczeniowe, dla których algorytm o takiej złożoności nie jest znany i być może w ogóle nie da się go opracować. Znanym przykładem takiego problemu jest problem komiwojażera.

Formalna definicja

Zapis f(n) = O(g(n)) oznacza, że istnieje taka wartość n0, że dla każdego n większego od n0 jest spełniona nierówność: f(n) ≤ cg(n), gdzie c jest stałą wartością.

W zapisie tym można zauważyć pewną nieścisłość. O(g(n)) nie jest pojedynczą funkcją, ale całym ich zbiorem. Dlatego prawidłowym zapisem powinno być f(n) ∈ O(g(n)). Powszechnie używany jest jednak zapis ze znakiem równości.

Można również zauważyć, że definicja ta stanowi tylko ograniczenie górne. W związku z tym zapisy typu 2n = O(n10) są poprawne, choć bardzo nieprecyzyjne. Podobnie, jak stwierdzenie mam w kieszeni co najwyżej kilka tysięcy złotych jest prawdziwe również wtedy, gdy mówiący ma w kieszeni złotówkę.

Notacje pokrewne

Jak już zauważyliśmy, notacja dużego O określa asymptotyczne ograniczenie górne. W analogiczny sposób można zapisać asymptotyczne ograniczenie dole. Do jego zapisu wykorzystywana jest notacja Ω (omega). Formalnie można ją zdefiniować tak: f(n) = Ω(g(n)) oznacza, że istnieje taka wartość n0, że dla każdego n większego od n0 jest spełniona nierówność: f(n) ≥ cg(n), gdzie c jest stałą wartością.

Łącząc ograniczenie górne i dolne otrzymujemy oszacowanie asymptotycznie dokładne. Do jego zapisu wykorzystywana jest notacja Θ (theta). Aby można było zapisać f(n) = Θ(g(n)), prawdziwe musi być zarówno wyrażenie f(n) = Ω(g(n)), jak i f(n) = O(g(n)).

Można z tego wysnuć wniosek, że notacja Θ jako najbardziej precyzyjna powinna być najczęściej używana. Jednak jej używanie do zapisu złożoności często byłoby błędne, gdyż nie uwzględniłoby przypadków optymistycznych. Przykładowo, pesymistyczna (a nawet średnia) złożoność czasowa sortowania przez wstawianie jest rzędu O(n2). Jeśli jednak dane są wstępnie posortowane, to złożoność redukuje się do O(n). Tak więc stwierdzenie, że algorytm ma złożoność Θ(n2) byłoby nadużyciem. Dlatego bezpieczniejsze jest stosowanie notacji dużego O.

W tym miejscu warto zauważyć, że do zapisu notacji dużego O tak naprawdę powinna być stosowana nie łacińska litera „O”, ale grecka litera „Ο” (omikron).

Bibliografia

Ocena: +3 Tak Nie
Liczba głosów: 3.

Dodano: 1 lutego 2018 16:17, ostatnia edycja: 26 stycznia 2019 17:44.

REKLAMA

Zobacz też

Problem komiwojażera (ang. travelling salesman problem, w skrócie TSP) – problem obliczeniowy polegający na poszukiwaniu w grafie takiego cyklu, który zawiera wszystkie wierzchołki (każdy dokładnie raz) i ma jak najmniejszy koszt. Bardziej formalnie, problem komiwojażera polega na poszukiwaniu w grafie cyklu Hammiltona o najmniejszej wadze.

Problem ma liczne zastosowania w życiu codziennym. Najlepszym przykładem jest praca kuriera, który musi wyjechać z magazynu, zawieźć przesyłki w różne miejsca i wrócić do magazynu.

Nie jest znany efektywny (tj. działający w czasie co najwyżej wielomianowym) algorytm dający gwarancję znalezienia optymalnego rozwiązania problemu komiwojażera. Problem ten jest bowiem zaliczany do klasy problemów NP-trudnych. W wersji decyzyjnej (czy istnieje cykl o długości mniejszej od x) problem jest zaliczany do klasy problemów NP-zupełnych. W grafie pełnym mającym n wierzchołków liczba możliwych cykli Hammiltona wynosi aż (n-1)!/2. W praktyce sprawdzenie wszystkich możliwości jest zatem wykonalne tylko dla niewielkiej liczby wierzchołków.

→ Czytaj całość

Algorytm Zhanga-Suena – algorytm służący do szkieletyzacji obrazu binarnego. Szieletyzacja polega na wyborze z obrazu binarnego tych pikseli, które są równo odległe od krawędzi obiektu.

→ Czytaj całość

Powtarzalny algorytm najbliższego sąsiada (ang. repetitive nearest neighbour algorithm, w skrócie RNN) – algorytm służący do rozwiązywania problemu komiwojażera korzystający z algorytmu najbliższego sąsiada.

Algorytm polega na wielokrotnym wykonaniu algorytmu najbliższego sąsiada w taki sposób, aby każdy wierzchołek raz był wierzchołkiem początkowym. Następnie algorytm zwraca najlepsze spośród otrzymanych rozwiązań.

Dla grafu pełnego algorytm ma złożoność O(n3), gdzie n jest liczbą wierzchołków. W trakcie wykonywania algorytmu RNN n razy zostanie wykonany algorytm najbliższego sąsiada, który ma złożoność czasową O(n2).

Algorytm RNN nie daje gwarancji znalezienia rozwiązania optymalnego. W odróżnieniu od algorytmu najbliższego sąsiada daje jednak gwarancję, że zwróci rozwiązanie co najmniej tak dobre, jak n/2-1 innych rozwiązań (dowód i więcej informacji na ten temat znajduje się w pracy podanej w bibliografii).

→ Czytaj całość
Polityka prywatnościKontakt