Algorytm Zhanga-Suena

Szkieletyzacja, animacja (1) Wykonanie algorytmu krok po kroku. Kolorem szarym oznaczono piksele usuwane w bieżącej iteracji
Szkieletyzacja, skoczek (2) Przykładowy obraz binarny i jego szkielet uzyskany za pomacą algorytmu
REKLAMA

Algorytmy. Ilustrowany przewodnik
−34%35,69 zł
Algorytmy. Ilustrowany przewodnik
−34%35,69 zł

Algorytm Zhanga-Suena – algorytm służący do szkieletyzacji obrazu binarnego. Szkieletyzacja polega na wyborze z obrazu binarnego tych pikseli, które są równo odległe od krawędzi obiektu.

Przebieg algorytmu

Przyjmijmy, że w przetwarzanym obrazie binarnym piksele o wartości 0 są pikselami tła, a piksele o wartości 1 są pikselami obiektów. Algorytm Zhanga-Suena jest algorytmem iteracyjnym – w każdej iteracji dla każdego piksela obiektów podejmowana jest decyzja, czy piksel ten należy usunąć, czy zostawić. Przy podjęciu decyzji brane jest pod uwagę sąsiedztwo piksela liczące 8 pikseli (sąsiedztwo Moore'a). Niech piksel P1 będzie aktualnie analizowanym pikselem. Jego sąsiedztwo oznaczone jest następująco:

P9 P2 P3
P8 P1 P4
P7 P6 P5

Dla analizowanego piksela P1 najpierw należy wyznaczyć następujące wartości:

  • B(P1) – liczba pikseli o wartości 1 w sąsiedztwie piksela,
  • A(P1) – liczba przejść 01 w ciągu (P2, P3, P4, P5, P6, P7, P8, P9, P2).
Piksel P1 należy usunąć, jeśli spełnione są następujące warunki:
  • 2 ≤ B(P1) ≤ 6,
  • A(P1) = 1,
  • (P2×P4×P6)+(P4×P6×P8)=0.
W iteracjach o numerach parzystych (druga, czwarta itd.) trzeci warunek należy zastąpić warunkiem:
  • (P2×P4×P8)+(P2×P6×P8)=0.

Należy pamiętać, że w każdej iteracji obraz należy zmodyfikować dopiero po przeanalizowaniu wszystkich pikseli – jeśli podjęto decyzję o usunięciu piksela, to do zakończenia danej iteracji dla jego sąsiadów musi on być nadal traktowany jako piksel o wartości 1. Można to zagwarantować np. tworząc na początku iteracji kopię obrazu, aby sprawdzać wartość pikseli w kopii, a modyfikować oryginał.

Algorytm kończy swoje działanie, gdy w trakcie dwóch ostatnich iteracji nie został usunięty żaden piksel.

Aby uniknąć błędów związanych z odczytem spoza obrazu, nie można analizować pikseli znajdujących się przy samej krawędzi. Z tego powodu dobrze jest zapewnić, że żaden piksel obiektu nie leży na krawędzi obrazu. Przykładowo, można przed rozpoczęciem działania algorytmu dodać do obrazu z każdej strony krawędź o szerokości jednego piksela zawierającą tylko piksele tła.

Komentarze

Warunek B(P1)≥2 zabezpiecza przed usunięciem ostatniego piksela w linii. Warunek B(P1)≤6 zabezpiecza przed wycinaniem dziur wewnątrz obiektów. Warunek A(P1)=1 zabezpiecza przed usunięciem piksele należące do szkieletu (sąsiadujące z tłem z więcej niż jednej strony). Dzięki trzeciemu warunkowi (zmieniającemu się pomiędzy iteracjami) w przypadku idealnie pionowych lub poziomych bloków ścinana jest naprzemiennie jedna i druga krawędź, co zabezpiecza przez powstaniem dziur w szkielecie (nie ma ryzyka, że dwa piksele pośrodku bloku zostaną usunięte w tej samej iteracji).

Algorytm ma pewne mankamenty. Przykładowo, w wyniku jego działania usunięte zostaną kwadraty o wymiarach 2×2. Innym problemem jest przycięcie niektórych ukośnych linii do pojedynczego piksela – taki przypadek przedstawiono w lewym dolnym rogu animacji (1).

Algorytm został opublikowany w pracy [1]. Przykładowe implementacje algorytmu są dostępne na stronie [2].

Bibliografia

  • T.Y. Zhang, C.Y. Suen, A Fast Parallel Algorithm for Thinning Digital Patterns, Magazine Communications of the ACM, Volume 27, Issue 3, 1984, s. 236-239, DOI: 10.1145/357994.358023.
  • Zhang-Suen thinning algorithm, rosettacode.org [Dostęp 2019-02-02].
Ocena: 0 Tak Nie
Liczba głosów: 0.

Dodano: 2 lutego 2019 15:18, ostatnia edycja: 21 kwietnia 2020 17:38.

REKLAMA

Zobacz też

Wyznaczanie najkrótszej ścieżki – zagadnienie polegające na wyszkaniu w grafie takiej ścieżki łączącej dwa wierzchołki, której suma wag krawędzi jest jak najmniejsza.

W przypadku pesymistycznym do wyznaczenia optymalnej ścieżki z wierzchołka A do wierzchołka B konieczne jest wyznaczenie najkrótszych ścieżek z wierzchołka A do wszystkich pozostałych wierzchołków w grafie. Zagadnienie takie jest określane jako poszukiwanie najkrótszych ścieżek z jednego źródła. Do rozwiązywania tego zagadnienia można wykorzystać następujące algorytmy:

Nieco innym zagadnieniem jest poszukiwanie najkrótszych ścieżek pomiędzy każdą parą wierzchołków. W tym celu można wykorzystać algorytmy wymienione powyżej (wykonując je wielokrotnie, za każdym razem przyjmując inny wierzchołek źródłowy) lub algorytmy poszukujące od razu wszystkich ścieżek, takie jak:

Aby znalezienie najkrótszej ścieżki było możliwe, graf nie może zawierać ujemnych cykli osiągalnych z wierzchołka źródłowego. Jeśli taki cykl istnieje, to poruszając się nim „w kółko” cały czas zmniejszamy długość ścieżki. Dopuszczalne jest natomiast występowanie krawędzi o ujemnej wadze, choć nie wszystkie algorytmy dopuszczają ten przypadek.

Jeśli poszukujemy ścieżek o najmniejszej liczbie krawędzi (np. wtedy, gdy wszystkie krawędzie mają taką samą, dodatnią wagę), to zamiast powyższych algorytmów możemy skorzystać z prostego przeszukiwania grafu wszerz.

→ Czytaj całość

Problem komiwojażera (ang. travelling salesman problem, w skrócie TSP) – problem obliczeniowy polegający na poszukiwaniu w grafie takiego cyklu, który zawiera wszystkie wierzchołki (każdy dokładnie raz) i ma jak najmniejszy koszt. Bardziej formalnie, problem komiwojażera polega na poszukiwaniu w grafie cyklu Hammiltona o najmniejszej wadze.

Problem ma liczne zastosowania w życiu codziennym. Najlepszym przykładem jest praca kuriera, który musi wyjechać z magazynu, zawieźć przesyłki w różne miejsca i wrócić do magazynu.

Nie jest znany efektywny (tj. działający w czasie co najwyżej wielomianowym) algorytm dający gwarancję znalezienia optymalnego rozwiązania problemu komiwojażera. Problem ten jest bowiem zaliczany do klasy problemów NP-trudnych. W wersji decyzyjnej (czy istnieje cykl o długości mniejszej od x) problem jest zaliczany do klasy problemów NP-zupełnych. W grafie pełnym mającym n wierzchołków liczba możliwych cykli Hammiltona wynosi aż (n-1)!/2. W praktyce sprawdzenie wszystkich możliwości jest zatem wykonalne tylko dla niewielkiej liczby wierzchołków.

→ Czytaj całość

Algorytm heurystyczny, heurystyka – algorytm niedający (w ogólnym przypadku) gwarancji znalezienia rozwiązania optymalnego, umożliwiający jednak znalezienie rozwiązania dość dobrego w rozsądnym czasie. Algorytmy tego typu używane są w takich problemach obliczeniowych, gdzie znalezienie rozwiązania optymalnego ma zbyt dużą złożoność obliczeniową (w szczególności są to problemy NP-trudne) lub w ogóle nie jest możliwe. Metody heurystyczne zaliczają się do sztucznej inteligencji.

Pojęcie algorytmów heurystycznych jest bardzo szerokie, dotyczy ono różnych technik projektowania algorytmów. Wiele heurystyk wykorzystuje losowość, inne zaś są deterministyczne (wówczas dla takich samych danych wejściowych algorytm zawsze zwróci ten sam wynik).

Ogólny algorytm heurystyczny (opisujący samą ideę poszukiwań) bywa określany w literaturze jako metaheurystyka. Zgodnie z tym nazewnictwem, metaheurystyką jest np. algorytm zachłanny (jako ogólna idea), zaś heurystyką jest np. algorytm najbliższego sąsiada (jako zastosowanie idei algorytmu zachłannego do konkretnego problemu).

Przykładowe techniki konstruowania algorytmów heurystycznych to:

→ Czytaj całość
Polityka prywatnościKontakt