Algorytm Zhanga-Suena

Szkieletyzacja, animacja (1) Wykonanie algorytmu krok po kroku. Kolorem szarym oznaczono piksele usuwane w bieżącej iteracji
Szkieletyzacja, skoczek (2) Przykładowy obraz binarny i jego szkielet uzyskany za pomacą algorytmu
REKLAMA

Prosto o AI. Jak działa i myśli sztuczna inteligencja?
−35%29,18 zł
Programowanie w języku C. Ćwiczenia praktyczne. Wydanie II
29,90 zł

Algorytm Zhanga-Suena – algorytm służący do szkieletyzacji obrazu binarnego. Szkieletyzacja polega na wyborze z obrazu binarnego tych pikseli, które są równo odległe od krawędzi obiektu.

Przebieg algorytmu

Przyjmijmy, że w przetwarzanym obrazie binarnym piksele o wartości 0 są pikselami tła, a piksele o wartości 1 są pikselami obiektów. Algorytm Zhanga-Suena jest algorytmem iteracyjnym – w każdej iteracji dla każdego piksela obiektów podejmowana jest decyzja, czy piksel ten należy usunąć, czy zostawić. Przy podjęciu decyzji brane jest pod uwagę sąsiedztwo piksela liczące 8 pikseli (sąsiedztwo Moore'a). Niech piksel P1 będzie aktualnie analizowanym pikselem. Jego sąsiedztwo oznaczone jest następująco:

P9 P2 P3
P8 P1 P4
P7 P6 P5

Dla analizowanego piksela P1 najpierw należy wyznaczyć następujące wartości:

  • B(P1) – liczba pikseli o wartości 1 w sąsiedztwie piksela,
  • A(P1) – liczba przejść 01 w ciągu (P2, P3, P4, P5, P6, P7, P8, P9, P2).
Piksel P1 należy usunąć, jeśli spełnione są następujące warunki:
  • 2 ≤ B(P1) ≤ 6,
  • A(P1) = 1,
  • (P2×P4×P6)+(P4×P6×P8)=0.
W iteracjach o numerach parzystych (druga, czwarta itd.) trzeci warunek należy zastąpić warunkiem:
  • (P2×P4×P8)+(P2×P6×P8)=0.

Należy pamiętać, że w każdej iteracji obraz należy zmodyfikować dopiero po przeanalizowaniu wszystkich pikseli – jeśli podjęto decyzję o usunięciu piksela, to do zakończenia danej iteracji dla jego sąsiadów musi on być nadal traktowany jako piksel o wartości 1. Można to zagwarantować np. tworząc na początku iteracji kopię obrazu, aby sprawdzać wartość pikseli w kopii, a modyfikować oryginał.

Algorytm kończy swoje działanie, gdy w trakcie dwóch ostatnich iteracji nie został usunięty żaden piksel.

Aby uniknąć błędów związanych z odczytem spoza obrazu, nie można analizować pikseli znajdujących się przy samej krawędzi. Z tego powodu dobrze jest zapewnić, że żaden piksel obiektu nie leży na krawędzi obrazu. Przykładowo, można przed rozpoczęciem działania algorytmu dodać do obrazu z każdej strony krawędź o szerokości jednego piksela zawierającą tylko piksele tła.

Komentarze

Warunek B(P1)≥2 zabezpiecza przed usunięciem ostatniego piksela w linii. Warunek B(P1)≤6 zabezpiecza przed wycinaniem dziur wewnątrz obiektów. Warunek A(P1)=1 zabezpiecza przed usunięciem piksele należące do szkieletu (sąsiadujące z tłem z więcej niż jednej strony). Dzięki trzeciemu warunkowi (zmieniającemu się pomiędzy iteracjami) w przypadku idealnie pionowych lub poziomych bloków ścinana jest naprzemiennie jedna i druga krawędź, co zabezpiecza przez powstaniem dziur w szkielecie (nie ma ryzyka, że dwa piksele pośrodku bloku zostaną usunięte w tej samej iteracji).

Algorytm ma pewne mankamenty. Przykładowo, w wyniku jego działania usunięte zostaną kwadraty o wymiarach 2×2. Innym problemem jest przycięcie niektórych ukośnych linii do pojedynczego piksela – taki przypadek przedstawiono w lewym dolnym rogu animacji (1).

Algorytm został opublikowany w pracy [1]. Przykładowe implementacje algorytmu są dostępne na stronie [2].

Bibliografia

  • T.Y. Zhang, C.Y. Suen, A Fast Parallel Algorithm for Thinning Digital Patterns, Magazine Communications of the ACM, Volume 27, Issue 3, 1984, s. 236-239, DOI: 10.1145/357994.358023.
  • Zhang-Suen thinning algorithm, rosettacode.org [Dostęp 2019-02-02].
Ocena: +1 Tak Nie
Liczba głosów: 1.

Dodano: 2 lutego 2019 15:18, ostatnia edycja: 21 kwietnia 2020 17:38.

REKLAMA

Zobacz też

Algorytm Kruskala – algorytm wyznaczający minimalne drzewo rozpinające. Algorytm ten wykorzystuje strategię zachłanną, zawsze zwraca rozwiązanie optymalne.

→ Czytaj całość

Stos (ang. Stack) – struktura danych, w której bezpośredni dostęp jest tylko do ostatnio dodanego elementu. Stos bywa określany także jako kolejka LIFO (z ang. Last In, First Out, czyli: ostatni na wejściu, pierwszy na wyjściu). Stos można sobie wyobrazić jako kilka rzeczy ułożonych „jedna na drugiej” – łatwo można wziąć tylko rzecz leżącą na samym wierzchu, gdyż pozostałe są przykryte.

→ Czytaj całość

K-opt, algorytm k-optymalny – algorytm lokalnej optymalizacji wykorzystywany przy rozwiązywaniu problemu komiwojażera. Algorytm ten nie służy do samego wyznaczania trasy, a jedynie do ulepszania jej. Najprostszą wersją tego algorytmu jest algorytm 2-optymalny.

→ Czytaj całość
Polityka prywatnościKontakt