Algorytm Zhanga-Suena

Szkieletyzacja, animacja (1) Wykonanie algorytmu krok po kroku. Kolorem szarym oznaczono piksele usuwane w bieżącej iteracji
Szkieletyzacja, skoczek (2) Przykładowy obraz binarny i jego szkielet uzyskany za pomacą algorytmu
REKLAMA Algorytmy i struktury danych z przykładami w Delphi
80,00 zł
Spring w akcji. Wydanie V
89,00 zł
Excel 2019 PL. Biblia
−30%90,30 zł
Wyrażenia regularne od podstaw
39,90 zł

Algorytm Zhanga-Suena – algorytm służący do szkieletyzacji obrazu binarnego. Szieletyzacja polega na wyborze z obrazu binarnego tych pikseli, które są równo odległe od krawędzi obiektu.

Przebieg algorytmu

Przyjmijmy, że w przetwarzanym obrazie binarnym piksele o wartości 0 są pikselami tła, a piksele o wartości 1 są pikselami obiektów. Algorytm Zhanga-Suena jest algorytmem iteracyjnym – w każdej iteracji dla każdego piksela obiektów podejmowana jest decyzja, czy piksel ten należy usunąć, czy zostawić. Przy podjęciu decyzji brane jest pod uwagę sąsiedztwo piksela liczące 8 pikseli (sąsiedztwo Moore'a). Niech piksel P1 będzie aktualnie analizowanym pikselem. Jego sąsiedztwo oznaczone jest następująco:

P9 P2 P3
P8 P1 P4
P7 P6 P5

Dla analizowanego piksela P1 najpierw należy wyznaczyć następujące wartości:

  • B(P1) – liczba pikseli o wartości 1 w sąsiedztwie piksela,
  • A(P1) – liczba przejść 01 w ciągu (P2, P3, P4, P5, P6, P7, P8, P9, P2).
Piksel P1 należy usunąć, jeśli spełnione są następujące warunki:
  • 2 ≤ B(P1) ≤ 6,
  • A(P1) = 1,
  • (P2×P4×P6)+(P4×P6×P8)=0.
W iteracjach o numerach parzystych (druga, czwarta itd.) trzeci warunek należy zastąpić warunkiem:
  • (P2×P4×P8)+(P2×P6×P8)=0.

Należy pamiętać, że w każdej iteracji obraz należy zmodyfikować dopiero po przeanalizowaniu wszystkich pikseli – jeśli podjęto decyzję o usunięciu piksela, to do zakończenia danej iteracji dla jego sąsiadów musi on być nadal traktowany jako piksel o wartości 1. Można to zagwarantować np. tworząc na początku iteracji kopię obrazu, aby sprawdzać wartość pikseli w kopii, a modyfikować oryginał.

Algorytm kończy swoje działanie, gdy w trakcie dwóch ostatnich iteracji nie został usunięty żaden piksel.

Aby uniknąć błędów związanych z odczytem spoza obrazu, nie można analizować pikseli znajdujących się przy samej krawędzi. Z tego powodu dobrze jest zapewnić, że żaden piksel obiektu nie leży na krawędzi obrazu. Przykładowo, można przed rozpoczęciem działania algorytmu dodać do obrazu z każdej strony krawędź o szerokości jednego piksela zawierającą tylko piksele tła.

Komentarze

Warunek B(P1)≥2 zabezpiecza przed usunięciem ostatniego piksela w linii. Warunek B(P1)≤6 zabezpiecza przed wycinaniem dziur wewnątrz obiektów. Warunek A(P1)=1 zabezpiecza przed usunięciem piksele należące do szkieletu (sąsiadujące z tłem z więcej niż jednej strony). Dzięki trzeciemu warunkowi (zmieniającemu się pomiędzy iteracjami) w przypadku idealnie pionowych lub poziomych bloków ścinana jest naprzemiennie jedna i druga krawędź, co zabezpiecza przez powstaniem dziur w szkielecie (nie ma ryzyka, że dwa piksele pośrodku bloku zostaną usunięte w tej samej iteracji).

Algorytm ma pewne mankamenty. Przykładowo, w wyniku jego działania usunięte zostaną kwadraty o wymiarach 2×2. Innym problemem jest przycięcie niektórych ukośnych linii do pojedynczego piksela – taki przypadek przedstawiono w lewym dolnym rogu animacji (1).

Algorytm został opublikowany w pracy [1]. Przykładowe implementacje algorytmu są dostępne na stronie [2].

Bibliografia

  • T.Y. Zhang, C.Y. Suen, A Fast Parallel Algorithm for Thinning Digital Patterns, Magazine Communications of the ACM, Volume 27, Issue 3, 1984, s. 236-239, DOI: 10.1145/357994.358023.
  • Zhang-Suen thinning algorithm, rosettacode.org [Dostęp 2019-02-02].
Ocena: 0 Tak Nie
Liczba głosów: 0.

Dodano: 2 lutego 2019 15:18.

REKLAMA

Zobacz też

Algorytm heurystyczny, heurystyka – algorytm niedający (w ogólnym przypadku) gwarancji znalezienia rozwiązania optymalnego, umożliwiający jednak znalezienie rozwiązania dość dobrego w rozsądnym czasie. Algorytmy tego typu używane są w takich problemach obliczeniowych, gdzie znalezienie rozwiązania optymalnego ma zbyt dużą złożoność obliczeniową (w szczególności są to problemy NP-trudne) lub w ogóle nie jest możliwe.

Pojęcie algorytmów heurystycznych jest bardzo szerokie, dotyczy ono różnych technik projektowania algorytmów. Wiele heurystyk wykorzystuje losowość, inne zaś są deterministyczne (wówczas dla takich samych danych wejściowych algorytm zawsze zwróci ten sam wynik).

Ogólny algorytm heurystyczny (opisujący samą ideę poszukiwań) bywa określany w literaturze jako metaheurystyka. Zgodnie z tym nazewnictwem, metaheurystyką jest np. algorytm zachłanny (jako ogólna idea), zaś heurystyką jest np. algorytm najbliższego sąsiada (jako zastosowanie idei algorytmu zachłannego do konkretnego problemu).

→ Czytaj całość

Algorytm Edmondsa-Karpa – algorytm wyszukiwania maksymalnego przepływu w sieci przepływowej. Jest to przypadek szczególny algorytmu Forda-Fulkersona.

W algorytmie Edmondsa-Karpa ścieżka powiększająca wyznaczana jest za pomocą przeszukiwania grafu wszerz. Dzięki temu w każdej iteracji algorytmu dołączana jest zawsze najkrótsza (pod względem liczby krawędzi) ścieżka powiększająca. W metodzie Forda-Fulkersona sposób wyznaczania ścieżki powiększającej jest dowolny.

→ Czytaj całość

Algorytm Johnsona – algorytm służący do wyznaczania najkrótszych ścieżek pomiędzy każdą parą wierzchołków w grafie. Algorytm wykorzystuje algorytm Dijkstry i algorytm Bellmana-Forda. Dopuszcza krawędzie o ujemnych wagach, o ile nie tworzą ujemnych cykli.

Złożoność czasowa algorytmu (jeśli algorytm Dijkstry zostanie zaimplementowany z wykorzystaniem kopca Fibonacciego) to O(n2log n + en), gdzie n jest liczbą wierzchołków, a e jest liczbą krawędzi. Dla grafów rzadkich (ze stosunkowo małą liczbą krawędzi) jest to złożoność lepsza, niż złożoność algorytmu Floyda-Warshalla.

→ Czytaj całość
Polityka prywatnościKontakt