Przeszukiwanie wszerz

Przeszukiwanie wszerz (1) Przeszukiwanie wszerz, przykład

Przeszukiwanie wszerz (ang. breadth-first search, w skrócie BFS) – jeden z dwóch podstawowych algorytmów przeszukiwania grafu. Polega na przeglądaniu wierzchołków grafu według ich odległości od wierzchołka źródłowego (wyrażanej w liczbie krawędzi).

Przebieg algorytmu

  1. Oznacz wszystkie wierzchołki grafu jako nieodwiedzone.
  2. Odwiedź wierzchołek źródłowy, dodaj go do kolejki Q.
  3. Dopóki kolejka Q nie jest pusta:
    1. Pobierz pierwszy wierzchołek z kolejki (usuwając go z niej).
    2. Odwiedź wszystkie jeszcze nieodwiedzone wierzchołki sąsiednie tego wierzchołka, dodaj je do kolejki Q.

Zwyczajowo przyjmuje się, że:

  • nieodwiedzone wierzchołki są oznaczone jako białe,
  • odwiedzone wierzchołki znajdujące się w kolejce Q oznaczone są jako szare,
  • odwiedzone wierzchołki spoza kolejki Q (te, których sąsiedzi są na pewno odwiedzeni) oznaczone są jako czarne.

Złożoność

Oznaczmy przez v liczbę wierzchołków grafu i przez e liczbę jego krawędzi. Początkowa część algorytmu ma złożoność O(v) – oznaczamy każdy wierzchołek. Liczba relacji sąsiedztwa jest równa liczbie krawędzi (lub jej dwukrotności, jeśli graf jest nieskierowany), więc złożoność czasowa głównej pętli algorytmu to O(e). Łącznie złożoność algorytmu jest więc rzędu O(v+e).

Jeśli każdy wierzchołek jest osiągalny ze źródła (po zakończeniu działania algorytmu nie będzie nieodwiedzonych wierzchołków), to e ≥ (v−1). Przy takim założeniu złożoność czasowa algorytmu wynosi O(e).

Zastosowanie

Za pomocą przeszukiwania grafu wszerz można wyznaczyć najkrótsze pod względem liczby krawędzi (ale nie wag!) ścieżki między wierzchołkiem źródłowym a pozostałymi wierzchołkami. Algorytm ten może być więc wykorzystany do rozwiązania szczególnego przypadku problemu najkrótszej ścieżki, gdy wszystkie krawędzie mają taką samą dodatnią wagę. Przeszukiwanie wszerz jest częścią składową niektórych bardziej zaawansowanych algorytmów grafowych, np. algorytmu Edmondsa-Karpa.

Bibliografia

  • T.H. Cormen, Ch.E. Leiserson, R.L. Rivest, C. Stein, Wprowadzenie do algorytmów, Wydawnictwo Naukowe PWN, Warszawa, 2012, ISBN 9788301169114.
Ocena: 0 Tak Nie
Liczba głosów: 0.

Dodano: 21 listopada 2017 17:35, ostatnia edycja: 30 stycznia 2019 15:55.

REKLAMA

Zobacz też

Wyznaczanie maksymalnego przepływu – problem obliczeniowy polegający na wyznaczeniu maksymalnego przepływu w sieci przepływowej.

Sieć przepływowa jest skierowanym grafem prostym. Każdy łuk (krawędź skierowana w grafie) ma swoją nieujemną wagę, która oznacza maksymalny dopuszczalny przepływ w tym łuku. Na potrzeby tego artykułu nazwijmy rzeczy przepływające przez sieć danymi. Jeden z wierzchołków sieci jest źródłem, z którego wypływają przesyłane dane. Inny z wierzchołków to ujście, do którego te dane wpływają. Zakłada się ponadto, że dla każdego z pozostałych wierzchołków istnieje ścieżka ze źródła do ujścia przechodząca przez ten wierzchołek.

Przepływem w sieci nazywamy przyporządkowanie każdemu łukowi pewnej wartości, która oznacza liczbę danych aktualnie przesyłanych przez ten łuk. Wartości te muszą spełniać następujące warunki:

  • Wartość przyporządkowana krawędzi musi być mniejsza lub równa jej wadze (warunek przepustowości).
  • Do każdego wierzchołka (poza źródłem i ujściem) musi wpływać tyle samo danych, ile z niego wypływa (warunek zachowania przepływu).

Omawiany problem polega na dobraniu takiego przepływu, aby liczba danych wypływających ze źródła (i zarazem wpływających do ujścia) była jak największa.

→ Czytaj całość

Algorytm Dijkstry – algorytm służący do wyznaczania najkrótszych ścieżek w grafie. Wyznacza najkrótsze ścieżki z jednego wierzchołka (zwanego wierzchołkiem źródłowym) do pozostałych wierzchołków. Algorytm wymaga, aby wagi krawędzi grafu nie były ujemne. Autorem algorytmu jest holenderski naukowiec Edsger Dijkstra.

Algorytm realizuje podejście zachłanne. W każdej iteracji wybierany jest ten spośród nieodwiedzonych wierzchołków, do którego można dotrzeć najmniejszym kosztem. Po wyznaczeniu ścieżki do konkretnego wierzchołka nie zostanie ona zmodyfikowana w trakcie wykonywania dalszej części algorytmu.

→ Czytaj całość

Metoda Forda-Fulkersona – algorytm służący do wyznaczania maksymalnego przepływu. Jest to algorytm bardzo ogólny, dlatego często nie jest nazywany algorytmem, a metodą. Popularną implementacją tej metody jest algorytm Edmondsa-Karpa. Algorytm można opisać następująco:

  1. Wyznacz sieć residualną (opis sieci residualnej znajduje się w dalszej części artykułu).
  2. Znajdź w sieci residualnej dowolną ścieżkę powiększającą.
  3. Jeśli nie udało się wyznaczyć żadnej ścieżki powiększającej, zakończ działanie algorytmu.
  4. W przeciwnym razie zwiększ przepływ w sieci (w sposób opisany w dalszej części artukułu) i wróć do punktu 1.
→ Czytaj całość
Polityka prywatnościKontakt