Przeszukiwanie wszerz

Przeszukiwanie wszerz (1) Przeszukiwanie wszerz, przykład

Przeszukiwanie wszerz (ang. breadth-first search, w skrócie BFS) – jeden z dwóch podstawowych algorytmów przeszukiwania grafu. Polega na przeglądaniu wierzchołków grafu według ich odległości od wierzchołka źródłowego (wyrażanej w liczbie krawędzi).

Przebieg algorytmu

  1. Oznacz wszystkie wierzchołki grafu jako nieodwiedzone.
  2. Odwiedź wierzchołek źródłowy, dodaj go do kolejki Q.
  3. Dopóki kolejka Q nie jest pusta:
    1. Pobierz pierwszy wierzchołek z kolejki (usuwając go z niej).
    2. Odwiedź wszystkie jeszcze nieodwiedzone wierzchołki sąsiednie tego wierzchołka, dodaj je do kolejki Q.

Zwyczajowo przyjmuje się, że:

  • nieodwiedzone wierzchołki są oznaczone jako białe,
  • odwiedzone wierzchołki znajdujące się w kolejce Q oznaczone są jako szare,
  • odwiedzone wierzchołki spoza kolejki Q (te, których sąsiedzi są na pewno odwiedzeni) oznaczone są jako czarne.

Złożoność

Oznaczmy przez v liczbę wierzchołków grafu i przez e liczbę jego krawędzi. Początkowa część algorytmu ma złożoność O(v) – oznaczamy każdy wierzchołek. Liczba relacji sąsiedztwa jest równa liczbie krawędzi (lub jej dwukrotności, jeśli graf jest nieskierowany), więc złożoność czasowa głównej pętli algorytmu to O(e). Łącznie złożoność algorytmu jest więc rzędu O(v+e).

Jeśli każdy wierzchołek jest osiągalny ze źródła (po zakończeniu działania algorytmu nie będzie nieodwiedzonych wierzchołków), to e ≥ (v−1). Przy takim założeniu złożoność czasowa algorytmu wynosi O(e).

Zastosowanie

Za pomocą przeszukiwania grafu wszerz można wyznaczyć najkrótsze pod względem liczby krawędzi (ale nie wag!) ścieżki między wierzchołkiem źródłowym a pozostałymi wierzchołkami. Algorytm ten może być więc wykorzystany do rozwiązania szczególnego przypadku problemu najkrótszej ścieżki, gdy wszystkie krawędzie mają taką samą dodatnią wagę. Przeszukiwanie wszerz jest częścią składową niektórych bardziej zaawansowanych algorytmów grafowych, np. algorytmu Edmondsa-Karpa.

Bibliografia

  • T.H. Cormen, Ch.E. Leiserson, R.L. Rivest, C. Stein, Wprowadzenie do algorytmów, Wydawnictwo Naukowe PWN, Warszawa, 2012, ISBN 9788301169114.
Ocena: 0 Tak Nie
Liczba głosów: 0.

Dodano: 21 listopada 2017 17:35, ostatnia edycja: 30 stycznia 2019 15:55.

REKLAMA

Zobacz też

Algorytm Kruskala – algorytm wyznaczający minimalne drzewo rozpinające. Algorytm ten wykorzystuje strategię zachłanną.

→ Czytaj całość

Problem wydawania reszty (ang. change-making problem) – problem obliczeniowy polegający na tym, aby mając określony zbiór nominałów wyrazić daną kwotę za pomocą jak najmniejszej liczby monet. Jest to szczególny przypadek problemu plecakowego.

→ Czytaj całość

Notacja dużego O – notacja przedstawiająca asymptotyczne tempo wzrostu, wykorzystywana do zapisywania złożoności obliczeniowej algorytmu. Za pomocą tej notacji zapisywany jest rząd wielkości funkcji wyrażającej liczbę operacji dominujących (w przypadku złożoności czasowej) lub rozmiar wymaganej pamięci (w przypadku złożoności pamięciowej) w zależności od liczby danych wejściowych.

Wykorzystując notację dużego O nie podajemy dokładnego wzoru funkcji, a jedynie jej najbardziej znaczący składnik, w dodatku z pominięciem stałego współczynnika. Przykładowo, funkcję postaci f(n)=5n2+20n+100 możemy zapisać jako O(n2). Zakładamy bowiem, że dla dostatecznie dużych n wpływ pomijanych elementów jest znikomy. Choć oczywiście dla małych n może się zdarzyć, że funkcja o gorszej złożoności będzie się wykonywała szybciej.

Weźmy dla przykładu funkcje f(n) = 1000n+2000 i g(n) = n2. Choć pierwsza funkcja ma pozornie bardzo duże stałe współczynniki, to dla n ≥ 1002 będzie ona przyjmowała wartości mniejsze. Im większe n, tym ta różnica będzie wyraźniejsza. Dla n = 10000 (w przypadku danych przetwarzanych komputerowo nie jest to wielka wartość) f(n) = 10002000 (ok. 10 mln), a g(n) = 100000000 (100 mln), czyli blisko 10 razy więcej.

Możliwe jest również wykorzystanie notacji dużego O dla funkcji wielu zmiennych. Wówczas zapis może wyglądać tak: O(v2e). Znajduje to zastosowanie np. dla algorytmów operujących na grafach, gdzie złożoność zależy zarówno od liczby wierzchołków, jak i liczby krawędzi w grafie.

→ Czytaj całość
Polityka prywatnościKontakt