Przeszukiwanie wszerz

Przeszukiwanie wszerz (1) Przeszukiwanie wszerz, przykład

Przeszukiwanie wszerz (ang. breadth-first search, w skrócie BFS) – jeden z dwóch podstawowych algorytmów przeszukiwania grafu. Polega na przeglądaniu wierzchołków grafu według ich odległości od wierzchołka źródłowego (wyrażanej w liczbie krawędzi).

Przebieg algorytmu

  1. Oznacz wszystkie wierzchołki grafu jako nieodwiedzone.
  2. Odwiedź wierzchołek źródłowy, dodaj go do kolejki Q.
  3. Dopóki kolejka Q nie jest pusta:
    1. Pobierz pierwszy wierzchołek z kolejki (usuwając go z niej).
    2. Odwiedź wszystkie jeszcze nieodwiedzone wierzchołki sąsiednie tego wierzchołka, dodaj je do kolejki Q.

Zwyczajowo przyjmuje się, że:

  • nieodwiedzone wierzchołki są oznaczone jako białe,
  • odwiedzone wierzchołki znajdujące się w kolejce Q oznaczone są jako szare,
  • odwiedzone wierzchołki spoza kolejki Q (te, których sąsiedzi są na pewno odwiedzeni) oznaczone są jako czarne.

Złożoność

Oznaczmy przez v liczbę wierzchołków grafu i przez e liczbę jego krawędzi. Początkowa część algorytmu ma złożoność O(v) – oznaczamy każdy wierzchołek. Liczba relacji sąsiedztwa jest równa liczbie krawędzi (lub jej dwukrotności, jeśli graf jest nieskierowany), więc złożoność czasowa głównej pętli algorytmu to O(e). Łącznie złożoność algorytmu jest więc rzędu O(v+e).

Jeśli każdy wierzchołek jest osiągalny ze źródła (po zakończeniu działania algorytmu nie będzie nieodwiedzonych wierzchołków), to e ≥ (v−1). Przy takim założeniu złożoność czasowa algorytmu wynosi O(e).

Zastosowanie

Za pomocą przeszukiwania grafu wszerz można wyznaczyć najkrótsze pod względem liczby krawędzi (ale nie wag!) ścieżki między wierzchołkiem źródłowym a pozostałymi wierzchołkami. Algorytm ten może być więc wykorzystany do rozwiązania szczególnego przypadku problemu najkrótszej ścieżki, gdy wszystkie krawędzie mają taką samą dodatnią wagę. Przeszukiwanie wszerz jest częścią składową niektórych bardziej zaawansowanych algorytmów grafowych, np. algorytmu Edmondsa-Karpa.

Bibliografia

  • T.H. Cormen, Ch.E. Leiserson, R.L. Rivest, C. Stein, Wprowadzenie do algorytmów, Wydawnictwo Naukowe PWN, Warszawa, 2012, ISBN 9788301169114.
Ocena: +3 Tak Nie
Liczba głosów: 3.

Dodano: 21 listopada 2017 17:35, ostatnia edycja: 30 stycznia 2019 15:55.

REKLAMA

Zobacz też

Dziel i zwyciężaj (ang. divide and conquer) – technika projektowania algorytmów polegająca na podejściu rekurencyjnym. W technice tej problem dzielony jest na mniejsze podproblemy, te podproblemy na jeszcze mniejsze podproblemy, aż dojdzie się do przypadków trywialnych (np. posortowanie jednoelementowej tablicy, obliczenie silni z 1).

Jeśli rozpatrywany problem wymaga podzielenia na podproblemy, jest on określany jako przypadek rekurencyjny. Jeśli mamy do czynienia z przypadkiem trywialnym, jest to przypadek bazowy. Tworząc algorytm wykorzystujący metodę dziel i zwyciężaj musimy ustalić:

  • Jak rozwiązać przypadek bazowy (trywialny).
  • Jak wyznaczyć rozwiązanie problemu, mając dostępne rozwiązania podproblemów.

Przykładem algorytmu opartego na tej metodzie jest sortowanie przez scalanie.

→ Czytaj całość

Programowanie dynamiczne – technika projektowania algorytmów polegająca na rozwiązywaniu podproblemów i zapamiętywaniu ich wyników. W technice tej, podobnie jak w metodzie dziel i zwyciężaj, problem dzielony jest na mniejsze podproblemy. Wyniki rozwiązywania podproblemów są jednak zapisywane w tabeli, dzięki czemu w przypadku natrafienia na ten sam podproblem nie trzeba go ponownie rozwiązywać.

Wykorzystując programowanie dynamiczne można zastosować metodę zstępującą z zapamiętywaniem lub metodę wstępującą.

  • Metoda zstępująca z zapamiętywaniem polega na rekurencyjnym wywoływaniu funkcji z zapamiętywaniem wyników. Metoda ta jest podobna do metody dziel i zwyciężaj – różni się od niej tym, że jeśli rozwiązanie danego problemu jest już w tabeli z wynikami, to należy je po prostu stamtąd odczytać.
  • Metoda wstępująca polega na rozwiązywaniu wszystkich możliwych podproblemów, zaczynając od tych o najmniejszym rozmiarze. Wówczas w momencie rozwiązywania podproblemu na pewno są już dostępne rozwiązania jego podproblemów. W tym podejściu nie zużywa się pamięci na rekurencyjne wywołania funkcji. Może się jednak okazać, że część podproblemów została rozwiązana nadmiarowo (nie były one potrzebne do rozwiązania głównego problemu).
→ Czytaj całość
Algorytm najmniejszej krawędzi – algorytm służący do rozwiązywania problemu komiwojażera. Jest to algorytm wykorzystujący strategię zachłanną, jednak w inny sposób, niż algorytm najbliższego sąsiada. W anglojęzycznej literaturze algorytm jest najczęściej określany po prostu jako greedy algorithm (algorytm zachłanny), w skrócie GR.
→ Czytaj całość
Polityka prywatnościKontakt