Zanieczyczczenie Giniego

REKLAMA

Prosto o AI. Jak działa i myśli sztuczna inteligencja?
−35%29,18 zł
Programowanie w języku C. Ćwiczenia praktyczne. Wydanie II
29,90 zł

Zanieczyszczenie Giniego (ang. Gini Impurity) – miara niejednorodności danego zbioru wyrażająca się wzorem:

$$G = ∑↙{n} p_n (1-p_n),$$

gdzie pn jest prawdopodobieństwem przynależności elementu do klasy n, czyli liczbą elementów danej klasy podzieloną przez liczbę elementów całego zbioru. Jeśli wszystkie elementy zbioru należą do tej samej klasy, zanieczyszczenie Giniego jest równe 0.

Zanieczyszczenia Giniego nie należy mylić ze współczynnikiem Giniego. Są to miary służące do wyrażania zupełnie innych rzeczy. Współczynnik Giniego określa nierównomierność rozkładu i jest wykorzystywany między innymi do liczbowego wyrażania nierówności w dochodach danego społeczeństwa.

Przykład

Niech będzie dany zbiór {a, a, a, a, a, a, b, b, b, c}. Zbiór ten zawiera dziesięć elementów: sześć należy do klasy a, trzy do klasy b i jeden do klasy c. Prawdopodobieństwa przynależności elementów do kolejnych klas wynoszą zatem kolejno:

  • 0,6 dla klasy a
  • 0,3 dla klasy b
  • 0,1 dla klasy c
Zanieczyszczenie wynosi w takim razie: 0,6 * 0,4 + 0,3 * 0,7 + 0,1 * 0,9 = 0,24 + 0,21 + 0,09 = 0,54.

Zastosowanie

Wskaźnik zanieczyszczenia Giniego jest wykorzystywany do oceny, na ile dobrze jakiś sposób podziału zbioru wejściowego (np. węzeł w drzewie decyzyjnym) separuje poszczególne klasy. Po podziale danego zbioru, łączne zanieczyszczenie uzyskanych podzbiorów wyraża się za pomocą średniej ważonej ich zanieczyszczeń, gdzie waga jest liczbą elementów w podzbiorze.

Przedstawmy to na prostym przykładzie. Załóżmy, że mamy pięć urządzeń:

  • urządzenie 1 – cena: 1000 zł, klasa energetyczna B,
  • urządzenie 2 – cena: 1100 zł, klasa energetyczna B,
  • urządzenie 3 – cena: 1200 zł, klasa energetyczna A,
  • urządzenie 4 – cena: 1300 zł, klasa energetyczna B,
  • urządzenie 5 – cena: 1400 zł, klasa energetyczna A.

Przyjmijmy, że chcemy ustalić próg cenowy, który oddzieliłby urządzenia wyższej klasy energetycznej od niższej. Idealny podział nie jest możliwy, ale za pomocą zanieczyszczenia Giniego możemy określić, który spośród czterech możliwych podziałów daje najbardziej jednolite podzbiory.

  • Dla progu wynoszącego 1050 zł otrzymamy podzbiór jednoelementowy {B} o wskaźniku zanieczyszczenia równym 0 i podzbiór czteroelementowy {B, A, B, A} o wskaźniku równym 1/2. Ich średnia ważona to (1 * 0 + 4 * (1/2)) / 5 = 2 / 5 = 0,4.
  • Dla progu wynoszącego 1150 zł otrzymamy podzbiór dwuelementowy {B, B} o wskaźniku zanieczyszczenia równym 0 i podzbiór trójelementowy {A, B, A} o wskaźniku równym 4/9. Ich średnia ważona to (2 * 0 + 3 * (4/9)) / 5 = 4 / 15 ≈ 0,27.
  • Dla progu wynoszącego 1250 zł otrzymamy podzbiór trójelementowy {B, B, A} o wskaźniku zanieczyszczenia równym 4/9 i podzbiór dwuelementowy {B, A} o wskaźniku równym 0,5. Ich średnia ważona to (3 * (4/9) + 2 * (1/2)) / 5 = 7 / 15 ≈ 0,47.
  • Dla progu wynoszącego 1350 zł otrzymamy podzbiór czteroelementowy {B, B, A, B} o wskaźniku zanieczyszczenia równym 3/8 i podzbiór jednoelementowy {A} o wskaźniku równym 0. Ich średnia ważona to (4 * (3/8) + 1 * 0) / 5 = 3 / 10 = 0,3.

Widzimy więc, że optymalnym progiem jest 1150 zł.

Bibliografia

Ocena: +1 Tak Nie
Liczba głosów: 1.

Dodano: 4 lutego 2022 19:59, ostatnia edycja: 20 września 2022 19:04.

REKLAMA

Zobacz też

Powtarzalny algorytm najbliższego sąsiada (ang. repetitive nearest neighbour algorithm, w skrócie RNN) – algorytm służący do rozwiązywania problemu komiwojażera korzystający z algorytmu najbliższego sąsiada.

Algorytm polega na wielokrotnym wykonaniu algorytmu najbliższego sąsiada w taki sposób, aby każdy wierzchołek raz był wierzchołkiem początkowym. Następnie algorytm zwraca najlepsze spośród otrzymanych rozwiązań.

Dla grafu pełnego algorytm ma złożoność O(n3), gdzie n jest liczbą wierzchołków. W trakcie wykonywania algorytmu RNN n razy zostanie wykonany algorytm najbliższego sąsiada, który ma złożoność czasową O(n2).

Algorytm RNN nie daje gwarancji znalezienia rozwiązania optymalnego. W odróżnieniu od algorytmu najbliższego sąsiada daje jednak gwarancję, że zwróci rozwiązanie co najmniej tak dobre, jak n/2-1 innych rozwiązań (dowód i więcej informacji na ten temat znajduje się w pracy podanej w bibliografii).

→ Czytaj całość
Algorytm najbliższego sąsiada (ang. nearest neighbour algorithm, w skrócie NN) – algorytm służący do rozwiązywania problemu komiwojażera. Jest to algorytm wykorzystujący strategię zachłanną.
→ Czytaj całość

Metoda z zastosowaniem przepływu blokującego – algorytm wyznaczający maksymalny przepływ w sieci przepływowej. W algorytmie tym przepływ zwiększany jest iteracyjnie, w każdej iteracji wyznaczony przepływ jest powiększany o przepływ blokujący w warstwowej sieci residualnej.

→ Czytaj całość
Polityka prywatnościKontakt