Algorytm

Algorytm genetyczny, schemat blokowy (1) Przykład zapisu algorytmu za pomocą schematu blokowego

Algorytm – przepis, zbiór poleceń, opis ciągu operacji prowadzących do rozwiązania konkretnego problemu. Algorytm możemy również rozumieć jako funkcję przekształcającą dane wejściowe w dane wyjściowe.

Algorytm musi być skończony, czyli jego zapis ma składać się ze skończonej liczby znaków. Musi również być poprawny, czyli dla wszystkich możliwych danych wejściowych powinien zwracać prawidłowy wynik (może być nim informacja o braku rozwiązania). Algorytm musi wykazywać również własność stopu – niezależnie od danych wejściowych obliczenia algorytmu powinny dochodzić do punktu końcowego, czyli po prostu kończyć się (nie mogą np. wpadać w nieskończoną iterację). Zapis algorytmu musi być precyzyjny, bez jakichkolwiek niejasności.

Zapis algorytmu

Algorytm można zapisać na różne sposoby. Najczęściej stosowane metody zapisu algorytmu to:

  • język naturalny (opis słowny),
  • schemat blokowy,
  • pseudokod (zapis przypominający język programowania, jednak nie będący nim),
  • język programowania.

Złożoność obliczeniowa

Do oceny algorytmu zazwyczaj wyznacza się jego złożoność czasową i pamięciową, czyli zależność pomiędzy rozmiarem danych wejściowych a czasem wykonania algorytmu i ilością wymaganej pamięci. Czas działania algorytmu jest wyrażony jako liczba operacji elementarnych (np. operacji porównania czy przypisania), które trzeba wykonać. Obliczanie czasu w fizycznych jednostkach byłoby znacznie mniej uniwersalne, ponieważ zależałoby to m.in. od szybkości komputera. Aby uprościć analizę, najczęściej bierze się pod uwagę wyłącznie wybrane operacje, określane jako operacje dominujące – są to operacje, których liczba wykonań jest proporcjonalna do liczby wykonań wszystkich operacji elementarnych.

Zazwyczaj nie jest potrzebna postać funkcji określającej złożoność, ale jedynie jej rząd wielkości. Jest to określane jako asymptotyczna złożoność obliczeniowa. Do oznaczania tej złożoności powszechnie stosuje się tzw. notację dużego O. Notacja ta określa asymptotyczne ograniczenie górne funkcji złożoności. Jeśli funkcja jest rzędu O(g(n)), to dla wystarczająco dużego n spełniona jest zależność 0≤f(n)≤cg(n), gdzie c jest stałą.

Powszechnie uznaje się, że akceptowalne są algorytmy o złożoności co najwyżej wielomianowej (O(nk), gdzie k nie zależy od rozmiaru danych wejściowych). Algorytmy o złożonościach wyższych rzędów (np. O(kn), O(n!), O(nn)) w praktyce działają w rozsądnym czasie tylko dla danych wejściowych o niewielkich rozmiarach.

Bibliografia

  • T.H. Cormen, Ch.E. Leiserson, R.L. Rivest, C. Stein, Wprowadzenie do algorytmów, Wydawnictwo Naukowe PWN, Warszawa, 2012, ISBN 9788301169114.
  • Z.J. Czech, S. Deorowicz, P. Fabian, Algorytmy i struktury danych. Wybrane zagadnienia, Wydawnictwo Politechniki Śląskiej, Gliwice, 2010, ISBN 9788373356689.
Ocena: -2 Tak Nie
Liczba głosów: 14.

Dodano: 27 czerwca 2017 18:10, ostatnia edycja: 30 stycznia 2019 15:49.

REKLAMA

Zobacz też

Wyznaczanie najkrótszej ścieżki – zagadnienie polegające na wyszkaniu w grafie takiej ścieżki łączącej dwa wierzchołki, której suma wag krawędzi jest jak najmniejsza.

W przypadku pesymistycznym do wyznaczenia optymalnej ścieżki z wierzchołka A do wierzchołka B konieczne jest wyznaczenie najkrótszych ścieżek z wierzchołka A do wszystkich pozostałych wierzchołków w grafie. Zagadnienie takie jest określane jako poszukiwanie najkrótszych ścieżek z jednego źródła. Do rozwiązywania tego zagadnienia można wykorzystać następujące algorytmy:

Nieco innym zagadnieniem jest poszukiwanie najkrótszych ścieżek pomiędzy każdą parą wierzchołków. W tym celu można wykorzystać algorytmy wymienione powyżej (wykonując je wielokrotnie, za każdym razem przyjmując inny wierzchołek źródłowy) lub algorytmy poszukujące od razu wszystkich ścieżek, takie jak:

Aby znalezienie najkrótszej ścieżki było możliwe, graf nie może zawierać ujemnych cykli osiągalnych z wierzchołka źródłowego. Jeśli taki cykl istnieje, to poruszając się nim „w kółko” cały czas zmniejszamy długość ścieżki. Dopuszczalne jest natomiast występowanie krawędzi o ujemnej wadze, choć nie wszystkie algorytmy dopuszczają ten przypadek.

Jeśli poszukujemy ścieżek o najmniejszej liczbie krawędzi (np. wtedy, gdy wszystkie krawędzie mają taką samą, dodatnią wagę), to zamiast powyższych algorytmów możemy skorzystać z prostego przeszukiwania grafu wszerz.

→ Czytaj całość

Sortowanie – zagadnienie polegające na uporządkowaniu elementów zbioru rosnąco lub malejąco według pewnego klucza. Zagadnienie to, ze względu na częstość występowania, jest bardzo istotne dla informatyki. Istnieje wiele różnych algorytmów realizujących sortowanie.

→ Czytaj całość

Przeszukiwanie w głąb (ang. depth-first search, w skrócie DFS) – jeden z dwóch podstawowych algorytmów przeszukiwania grafu. Polega na przechodzeniu zawsze do kolejnego nieodwiedzonego wierzchołka. Jeśli dany wierzchołek nie ma nieodwiedzonych sąsiadów, wracamy do poprzedniego wierzchołka i sprawdzamy jego sąsiadów. Mówiąc obrazowo, w algorytmie tym wchodzimy tak głęboko, jak to możliwe (przechodzimy dalej, dopóki się da).

Algorytm można zapisać w sposób rekurencyjny. Wywoływana rekurencyjnie procedura działa następująco: oznacz wierzchołek jako odwiedzony, a następnie wywołaj tę procedurę dla każdego sąsiada danego wierzchołka, jeśli nie został on wcześniej odwiedzony. Na początku wywołujemy procedurę dla wierzchołka początkowego.

→ Czytaj całość
Polityka prywatnościKontakt