PHP 7. Algorytmy i struktury danych
−25%44,25 zł
Jak się nie pomylić, czyli potęga matematycznego myślenia
−30%27,93 zł
Programowanie w języku C. Ćwiczenia praktyczne. Wydanie II
−25%14,92 zł
Algorytmy. Ilustrowany przewodnik
−25%41,17 zł
ASP.NET Core MVC 2. Zaawansowane programowanie. Wydanie VII
129,00 zł
JavaScript i jQuery. Interaktywne strony WWW dla każdego
−25%74,25 zł

Sortowanie bąbelkowe

Tutorial
Na ten temat mamy również tutorial „Sortowanie bąbelkowe”, który ilustruje działanie algorytmu krok po kroku. Zapraszamy do zapoznania się z nim!
Sortowanie bąbelkowe Przykład sortowania bąbelkowego
Sortowanie bąbelkowe (ang. bubble sort) – prosty algorytm sortowania polegający na porównywaniu za sobą sąsiednich elementów. Złożoności czasowa algorytmu wynosi O(n2).

Działanie algorytmu

W pierwszym kroku algorytm porównuje pierwszy element ciągu z drugim i zamienia je ze sobą miejscami, jeśli są w nieprawidłowej kolejności. Następnie w analogiczny sposób porównywany jest drugi element z trzecim, trzeci z czwartym itd. Po dojściu w ten sposób do końca ciągu mamy pewność, że największy (lub najmniejszy, jeśli sortujemy malejąco) element znajduje się na końcu ciągu. W kolejnych krokach ponownie porównujemy ze sobą element pierwszy z drugim, drugi z trzecim itd., tym razem kończąc jednak na przedostatnim elemencie. Przeglądanie ciągu powtarzamy wielokrotnie, za każdym razem wykonując o jedno porównanie mniej. Algorytm kończy się, gdy w trakcie ostatniego przeglądania wykonane zostanie tylko jedno porównanie – wówczas wszystkie elementy na pewno są na swoich miejscach.

Przykładowy kod źródłowy w języku C jest umieszczony poniżej. Kod ten realizuje sortowanie rosnące.

void sortowanie_babelkowe(int* tab, int n)
{
    int i, j, t;

    for (i = n-1; i > 0; --i)
    {
        for (j = 0; j < i; ++j) 
        {
            if (tab[j] > tab[j+1])
            {
                t = tab[j];
                tab[j] = tab[j+1];
                tab[j+1] = t;
            }
        } 
    } 
}

Złożoność czasowa

W trakcie pierwszego przeglądania ciągu zostaje wykonanych n-1 porównań, gdzie n jest liczbą elementów do posortowania. W każdym kolejnym przeglądaniu wykonuje się o jedno porównanie mniej. Łączna liczba porównań wynosi zatem (n-1)+(n-2)+…+1, czyli (n-1)*n/2. Złożoność czasowa algorytmu jest więc kwadratowa.

Warto zauważyć, że ilość wymaganych porównań nie zależy od stopnia początkowego ułożenia elementów w ciągu. Nawet jeśli będziemy sortowali ciąg posortowany już na początku, to algorytm i tak będzie musiał wykonać wszystkie porównania. Średnia złożoność czasowa tego algorytmu jest zatem równa pesymistycznej.

Aby nieco przyspieszyć algorytm, można zapamiętywać, czy w trakcie ostatniego przeglądania ciągu wystąpiła choć jedna zamiana elementów. Jeśli nie, wszystkie elementy na pewno są już na swoich miejscach i można przerwać wykonywanie algorytmu.

Algorytm sortowania bąbelkowego jest intuicyjny (i w związku z tym jest dość popularny), ale stosunkowo mało wydajny. Jeśli zamierzamy zastosować jakiś prosty i szybki w implementacji algorytm, warto rozważyć zastosowanie równie prostego sortowania przez wstawianie.

Ocena: 0 Tak Nie
Liczba głosów: 0.

Dodano: 26 września 2016 16:15, ostatnia edycja: 24 marca 2017 10:37.

Zobacz też

Graf – struktura składająca się ze zbioru wierzchołków oraz zbioru krawędzi. Grafy mają szerokie zastosowanie w informatyce, można za ich pomocą przedstawić wiele zagadnień.

Wyróżniamy grafy nieskierowane oraz grafy skierowane. W grafie nieskierowanym relacja sąsiedztwa jest symetryczna, tzn. krawędź łączy wierzchołki „w obie strony”. W grafie skierowanym krawędzie są „jednokierunkowe”. Krawędź grafu skierowanego zazwyczaj jest określana jako łuk.

Graf ważony (inaczej graf z wagami) to taki graf, w którym każdej krawędzi przypisana jest pewna wartość liczbowa. Wartość ta może oznaczać np. długość krawędzi lub jej przepustowość.

→ Czytaj całość

Metoda z zastosowaniem przepływu blokującego – algorytm wyznaczający maksymalny przepływ w sieci przepływowej. W algorytmie tym przepływ zwiększany jest iteracyjnie, w każdej iteracji wyznaczony przepływ jest powiększany o przepływ blokujący w warstwowej sieci residualnej.

→ Czytaj całość

Problem komiwojażera (ang. travelling salesman problem, w skrócie TSP) – problem obliczeniowy polegający na poszukiwaniu w grafie takiego cyklu, który zawiera wszystkie wierzchołki (każdy dokładnie raz) i ma jak najmniejszy koszt. Bardziej formalnie, problem komiwojażera polega na poszukiwaniu w grafie cyklu Hammiltona o najmniejszej wadze.

Problem ma liczne zastosowania w życiu codziennym. Najlepszym przykładem jest praca kuriera, który musi wyjechać z magazynu, zawieźć przesyłki w różne miejsca i wrócić do magazynu.

Nie jest znany efektywny (tj. działający w czasie co najwyżej wielomianowym) algorytm dający gwarancję znalezienia optymalnego rozwiązania problemu komiwojażera. Problem ten jest bowiem zaliczany do klasy problemów NP-trudnych. W wersji decyzyjnej (czy istnieje cykl o długości mniejszej od x) problem jest zaliczany do klasy problemów NP-zupełnych. W grafie pełnym mającym n wierzchołków liczba możliwych cykli Hammiltona wynosi aż (n-1)!/2. W praktyce sprawdzenie wszystkich możliwości jest zatem wykonalne tylko dla niewielkiej liczby wierzchołków.

→ Czytaj całość
Polityka prywatnościKontakt