Zrozum struktury danych. Algorytmy i praca na danych w Javie
−30%27,93 zł
Algorytmy. Ilustrowany przewodnik
54,90 zł
Kwalifikacja EE.08. Montaż i eksploatacja systemów komputerowych, urządzeń peryferyjnych i sieci. Część 1. Urządzenia techniki komputerowej. Podręcznik do nauki zawodu technik informatyk
37,95 zł
Czysta architektura. Struktura i design oprogramowania. Przewodnik dla profesjonalistów
67,00 zł
Kwalifikacja EE.09. Programowanie, tworzenie i administrowanie stronami internetowymi i bazami danych. Część 1. Tworzenie stron internetowych. Podręcznik do nauki zawodu technik informatyk
47,00 zł

Sortowanie bąbelkowe

Tutorial
Na ten temat mamy również tutorial „Sortowanie bąbelkowe”, który ilustruje działanie algorytmu krok po kroku. Zapraszamy do zapoznania się z nim!
Sortowanie bąbelkowe Przykład sortowania bąbelkowego
Sortowanie bąbelkowe (ang. bubble sort) – prosty algorytm sortowania polegający na porównywaniu za sobą sąsiednich elementów. Złożoności czasowa algorytmu wynosi O(n2).

Działanie algorytmu

W pierwszym kroku algorytm porównuje pierwszy element ciągu z drugim i zamienia je ze sobą miejscami, jeśli są w nieprawidłowej kolejności. Następnie w analogiczny sposób porównywany jest drugi element z trzecim, trzeci z czwartym itd. Po dojściu w ten sposób do końca ciągu mamy pewność, że największy (lub najmniejszy, jeśli sortujemy malejąco) element znajduje się na końcu ciągu. W kolejnych krokach ponownie porównujemy ze sobą element pierwszy z drugim, drugi z trzecim itd., tym razem kończąc jednak na przedostatnim elemencie. Przeglądanie ciągu powtarzamy wielokrotnie, za każdym razem wykonując o jedno porównanie mniej. Algorytm kończy się, gdy w trakcie ostatniego przeglądania wykonane zostanie tylko jedno porównanie – wówczas wszystkie elementy na pewno są na swoich miejscach.

Przykładowy kod źródłowy w języku C jest umieszczony poniżej. Kod ten realizuje sortowanie rosnące.

void sortowanie_babelkowe(int* tab, int n)
{
    int i, j, t;

    for (i = n-1; i > 0; --i)
    {
        for (j = 0; j < i; ++j) 
        {
            if (tab[j] > tab[j+1])
            {
                t = tab[j];
                tab[j] = tab[j+1];
                tab[j+1] = t;
            }
        } 
    } 
}

Złożoność czasowa

W trakcie pierwszego przeglądania ciągu zostaje wykonanych n-1 porównań, gdzie n jest liczbą elementów do posortowania. W każdym kolejnym przeglądaniu wykonuje się o jedno porównanie mniej. Łączna liczba porównań wynosi zatem (n-1)+(n-2)+…+1, czyli (n-1)*n/2. Złożoność czasowa algorytmu jest więc kwadratowa.

Warto zauważyć, że ilość wymaganych porównań nie zależy od stopnia początkowego ułożenia elementów w ciągu. Nawet jeśli będziemy sortowali ciąg posortowany już na początku, to algorytm i tak będzie musiał wykonać wszystkie porównania. Średnia złożoność czasowa tego algorytmu jest zatem równa pesymistycznej.

Aby nieco przyspieszyć algorytm, można zapamiętywać, czy w trakcie ostatniego przeglądania ciągu wystąpiła choć jedna zamiana elementów. Jeśli nie, wszystkie elementy na pewno są już na swoich miejscach i można przerwać wykonywanie algorytmu.

Algorytm sortowania bąbelkowego jest intuicyjny (i w związku z tym jest dość popularny), ale stosunkowo mało wydajny. Jeśli zamierzamy zastosować jakiś prosty i szybki w implementacji algorytm, warto rozważyć zastosowanie równie prostego sortowania przez wstawianie.

Ocena: 0 Tak Nie
Liczba głosów: 0.

Dodano: 26 września 2016 16:15, ostatnia edycja: 24 marca 2017 10:37.

Zobacz też

Przeszukiwanie w głąb (ang. depth-first search, w skrócie DFS) – jeden z dwóch podstawowych algorytmów przeszukiwania grafu. Polega na przechodzeniu zawsze do kolejnego nieodwiedzonego wierzchołka. Jeśli dany wierzchołek nie ma nieodwiedzonych sąsiadów, wracamy do poprzedniego wierzchołka i sprawdzamy jego sąsiadów. Mówiąc obrazowo, w algorytmie tym wchodzimy tak głęboko, jak to możliwe (przechodzimy dalej, dopóki się da).

Algorytm można zapisać w sposób rekurencyjny. Wywoływana rekurencyjnie procedura działa następująco: oznacz wierzchołek jako odwiedzony, a następnie wywołaj tę procedurę dla każdego sąsiada danego wierzchołka, jeśli nie został on wcześniej odwiedzony. Na początku wywołujemy procedurę dla wierzchołka początkowego.

→ Czytaj całość

Algorytm Edmondsa-Karpa – algorytm wyszukiwania maksymalnego przepływu w sieci przepływowej. Jest to przypadek szczególny algorytmu Forda-Fulkersona.

W algorytmie Edmondsa-Karpa ścieżka powiększająca wyznaczana jest za pomocą przeszukiwania grafu wszerz. Dzięki temu w każdej iteracji algorytmu dołączana jest zawsze najkrótsza (pod względem liczby krawędzi) ścieżka powiększająca. W metodzie Forda-Fulkersona sposób wyznaczania ścieżki powiększającej jest dowolny.

→ Czytaj całość

Stos (ang. Stack) – struktura danych, w której bezpośredni dostęp jest tylko do ostatnio dodanego elementu. Stos bywa określany także jako kolejka LIFO (z ang. Last In, First Out, czyli: ostatni na wejściu, pierwszy na wyjściu). Stos można sobie wyobrazić jako kilka rzeczy ułożonych „jedna na drugiej” – łatwo można wziąć tylko rzecz leżącą na samym wierzchu, gdyż pozostałe są przykryte.

→ Czytaj całość
Polityka prywatnościKontakt