Sortowanie bąbelkowe

Tutorial
Na ten temat mamy również tutorial „Sortowanie bąbelkowe”, który ilustruje działanie algorytmu krok po kroku. Zapraszamy do zapoznania się z nim!
Sortowanie bąbelkowe (1) Przykład sortowania bąbelkowego
Sortowanie bąbelkowe (ang. bubble sort) – prosty algorytm sortowania polegający na porównywaniu za sobą sąsiednich elementów. Złożoności czasowa algorytmu wynosi O(n2).

Działanie algorytmu

W pierwszym kroku algorytm porównuje pierwszy element ciągu z drugim i zamienia je ze sobą miejscami, jeśli są w nieprawidłowej kolejności. Następnie w analogiczny sposób porównywany jest drugi element z trzecim, trzeci z czwartym itd. Po dojściu w ten sposób do końca ciągu mamy pewność, że największy (lub najmniejszy, jeśli sortujemy malejąco) element znajduje się na końcu ciągu. W kolejnych krokach ponownie porównujemy ze sobą element pierwszy z drugim, drugi z trzecim itd., tym razem kończąc jednak na przedostatnim elemencie. Przeglądanie ciągu powtarzamy wielokrotnie, za każdym razem wykonując o jedno porównanie mniej. Algorytm kończy się, gdy w trakcie ostatniego przeglądania wykonane zostanie tylko jedno porównanie – wówczas wszystkie elementy na pewno są na swoich miejscach.

Przykładowy kod źródłowy w języku C jest umieszczony poniżej. Kod ten realizuje sortowanie rosnące.

void sortowanie_babelkowe(int* tab, int n)
{
    int i, j, t;

    for (i = n-1; i > 0; --i)
    {
        for (j = 0; j < i; ++j) 
        {
            if (tab[j] > tab[j+1])
            {
                t = tab[j];
                tab[j] = tab[j+1];
                tab[j+1] = t;
            }
        } 
    } 
}

Złożoność czasowa

W trakcie pierwszego przeglądania ciągu zostaje wykonanych n-1 porównań, gdzie n jest liczbą elementów do posortowania. W każdym kolejnym przeglądaniu wykonuje się o jedno porównanie mniej. Łączna liczba porównań wynosi zatem (n-1)+(n-2)+…+1, czyli (n-1)*n/2. Złożoność czasowa algorytmu jest więc kwadratowa.

Warto zauważyć, że ilość wymaganych porównań nie zależy od stopnia początkowego ułożenia elementów w ciągu. Nawet jeśli będziemy sortowali ciąg posortowany już na początku, to algorytm i tak będzie musiał wykonać wszystkie porównania. Średnia złożoność czasowa tego algorytmu jest zatem równa pesymistycznej.

Aby nieco przyspieszyć algorytm, można zapamiętywać, czy w trakcie ostatniego przeglądania ciągu wystąpiła choć jedna zamiana elementów. Jeśli nie, wszystkie elementy na pewno są już na swoich miejscach i można przerwać wykonywanie algorytmu.

Algorytm sortowania bąbelkowego jest intuicyjny (i w związku z tym jest dość popularny), ale stosunkowo mało wydajny. Jeśli zamierzamy zastosować jakiś prosty i szybki w implementacji algorytm, warto rozważyć zastosowanie równie prostego sortowania przez wstawianie.

Ocena: +8 Tak Nie
Liczba głosów: 12.

Dodano: 26 września 2016 16:15, ostatnia edycja: 24 marca 2017 10:37.

REKLAMA

Zobacz też

Rekurencja (inaczej rekursja) – odwołanie się funkcji lub definicji do samej siebie. Mówiąc inaczej, podejście rekurencyjne polega na tym, że rozwiązanie problemu wyraża się za pomocą rozwiązania tego samego problemu dla mniejszych danych wejściowych. Stosowanie rekurencji jest charakterystyczne dla algorytmów projektowanych metodą dziel i zwyciężaj.

Typowym problemem, dla którego można zastosować rekurencję, jest obliczanie silni. Przypomnijmy, że silnia z n jest zdefiniowana jako n!=1×2×…×n. Funkcja ta może być równoważnie zapisana jako:

n!=(n−1)!×n, dla n>0,
n!=1, dla n=0.

W powyższym przykładzie górny wiersz jest ogólnym równaniem rekurencji, zaś dolny wiersz jest wartością brzegową. W języku C++ powyższa funkcja byłaby zapisana w poniższy sposób.

int silnia(int n)
{
    if (n > 0)
    {
        return n * silnia(n-1);
    }
    else
    {
        return 1;
    }
};

Przekształcenie postaci rekurencyjnej funkcji do postaci zwartej (tzn. takiej, która nie zawiera odwołania do samej siebie) jest określane jako rozwiązanie rekurencji. Metody rozwiązywania rekurencji są dostępne między innymi w książkach podanych w bibliografii.

Algorytmy stosujące rekurencję są zazwyczaj proste w implementacji. Jednocześnie wiążą się one z pewnymi problemami. Przy podejściu rekurencyjnym ta sama funkcja jest wywoływana wielokrotnie, co zużywa pamięć operacyjną (w skrajnych przypadkach może to spowodować przepełnienie stosu).

→ Czytaj całość

Ten artykuł opisuje algorytm rozwiązujący problem wydawania reszty oparty na programowaniu dynamicznym. Algorytm ten daje gwarancję znalezienia rozwiązania optymalnego.

Istnieje również pewna modyfikacja tego algorytmu, która została opisana w osobnym artykule.

→ Czytaj całość

Algorytm Johnsona – algorytm służący do wyznaczania najkrótszych ścieżek pomiędzy każdą parą wierzchołków w grafie. Algorytm wykorzystuje algorytm Dijkstry i algorytm Bellmana-Forda. Dopuszcza krawędzie o ujemnych wagach, o ile nie tworzą ujemnych cykli.

Złożoność czasowa algorytmu (jeśli algorytm Dijkstry zostanie zaimplementowany z wykorzystaniem kopca Fibonacciego) to O(n2log n + en), gdzie n jest liczbą wierzchołków, a e jest liczbą krawędzi. Dla grafów rzadkich (ze stosunkowo małą liczbą krawędzi) jest to złożoność lepsza, niż złożoność algorytmu Floyda-Warshalla.

→ Czytaj całość
Polityka prywatnościKontakt