Algorytmy. Ćwiczenia
34,90 zł
Projektowanie systemów rozproszonych. Wzorce i paradygmaty dla skalowalnych, niezawodnych usług
−30%27,93 zł
PHP 7. Algorytmy i struktury danych
59,00 zł
Java. Kompendium programisty. Wydanie X
179,00 zł
Opus magnum C++11. Programowanie w języku C++ (komplet)
149,00 zł
Uczenie maszynowe z użyciem Scikit-Learn i TensorFlow
89,00 zł

Sortowanie przez wstawianie

Tutorial
Na ten temat mamy również tutorial „Sortowanie przez wstawianie”, który ilustruje działanie algorytmu krok po kroku. Zapraszamy do zapoznania się z nim!
Sortowanie przez wstawianie Przykład sortowania przez wstawianie
REKLAMA

Sortowanie przez wstawianie (ang. insertion sort) – prosty algorytm sortowania polegający na wstawianiu kolejnych elementów ciągu we właściwe miejsca. Złożoności czasowa algorytmu wynosi O(n2). Jest to algorytm realizujący metodę przyrostową.

Działanie algorytmu

Sortowany ciąg dzielony jest na część posortowaną i nieposortowaną. Na początku w części posortowanej znajduje się tylko jeden element (pierwszy). W każdym kolejnym kroku bierzemy pierwszy element z części nieposortowanej i wstawiamy we właściwe miejsce części posortowanej. Aby to zrobić, wstawiany element porównujemy kolejno z ostatnim elementem posortowanej części ciągu, z przedostatnim itd. Algorytm kończy się, gdy wszystkie elementy znajdują się w części posortowanej.

Przykładowy kod źródłowy w języku C jest umieszczony poniżej. Kod ten realizuje sortowanie rosnące.

void sortowanie_przez_wstawianie(int* tab, int n)
{
    int i, j, t;

    for (i = 1; i < n; ++i)
    {
        j = i;
        while ( (j > 0) && (tab[j-1] > tab[j]) ) 
        {
            t = tab[j];
            tab[j] = tab[j-1];
            tab[j-1] = t;
            --j;
        } 
    } 
}

Złożoność czasowa

Główna pętla algorytmu wykona się n-1 razy (n jest liczbą elementów do posortowania). W każdym wykonaniu pętli głównej wystąpi od 1 do j porównań, gdzie j jest numerem aktualnego wykonania pętli. W przypadku pesymistycznym algorytm wykona 1+…+(n-1)+(n-2)=(n-1)*n/2 porównań, czyli tyle samo, co algorytm sortowania bąbelkowego. Jednak w przypadku optymistycznym (sortowanie posortowanego ciągu) w każdym wykonaniu pętli głównej odbędzie się tylko jedno porównanie, co daje łącznie jedynie n-1 porównań (złożoność optymistyczna jest zatem liniowa).

Policzmy teraz, jaka jest średnia złożoność algorytmu. Jak już wspomniano, w każdym wykonaniu pętli głównej wystąpi od 1 do j porównań. Zakładając, że każda z tych liczb jest tak samo prawdopodobna, średnia liczba porównań wynosi (j+1)/2. W całym algorytmie wystąpi zatem (1+1)/2+(2+1)/2+…+n/2 porównań, czyli (n-1)(n+2)/4. Nadal jest to złożoność kwadratowa, jednak jest to algorytm szybszy od sortowania bąbelkowego. Przewaga sortowania przez proste wstawianie będzie tym większa, im większe będzie prawdopodobieństwo, że elementy w ciągu już na początku są częściowo posortowane.

Ocena: 0 Tak Nie
Liczba głosów: 0.

Dodano: 29 września 2016 11:53, ostatnia edycja: 28 czerwca 2017 15:19.

REKLAMA

Zobacz też

Algorytm Edmondsa-Karpa – algorytm wyszukiwania maksymalnego przepływu w sieci przepływowej. Jest to przypadek szczególny algorytmu Forda-Fulkersona.

W algorytmie Edmondsa-Karpa ścieżka powiększająca wyznaczana jest za pomocą przeszukiwania grafu wszerz. Dzięki temu w każdej iteracji algorytmu dołączana jest zawsze najkrótsza (pod względem liczby krawędzi) ścieżka powiększająca. W metodzie Forda-Fulkersona sposób wyznaczania ścieżki powiększającej jest dowolny.

→ Czytaj całość

Problem komiwojażera (ang. travelling salesman problem, w skrócie TSP) – problem obliczeniowy polegający na poszukiwaniu w grafie takiego cyklu, który zawiera wszystkie wierzchołki (każdy dokładnie raz) i ma jak najmniejszy koszt. Bardziej formalnie, problem komiwojażera polega na poszukiwaniu w grafie cyklu Hammiltona o najmniejszej wadze.

Problem ma liczne zastosowania w życiu codziennym. Najlepszym przykładem jest praca kuriera, który musi wyjechać z magazynu, zawieźć przesyłki w różne miejsca i wrócić do magazynu.

Nie jest znany efektywny (tj. działający w czasie co najwyżej wielomianowym) algorytm dający gwarancję znalezienia optymalnego rozwiązania problemu komiwojażera. Problem ten jest bowiem zaliczany do klasy problemów NP-trudnych. W wersji decyzyjnej (czy istnieje cykl o długości mniejszej od x) problem jest zaliczany do klasy problemów NP-zupełnych. W grafie pełnym mającym n wierzchołków liczba możliwych cykli Hammiltona wynosi aż (n-1)!/2. W praktyce sprawdzenie wszystkich możliwości jest zatem wykonalne tylko dla niewielkiej liczby wierzchołków.

→ Czytaj całość
Algorytm najmniejszej krawędzi – algorytm służący do rozwiązywania problemu komiwojażera. Jest to algorytm wykorzystujący strategię zachłanną, jednak w inny sposób, niż algorytm najbliższego sąsiada. W anglojęzycznej literaturze algorytm jest najczęściej określany po prostu jako greedy algorithm (algorytm zachłanny), w skrócie GR.
→ Czytaj całość
Polityka prywatnościKontakt