Sortowanie przez wstawianie

Tutorial
Na ten temat mamy również tutorial „Sortowanie przez wstawianie”, który ilustruje działanie algorytmu krok po kroku. Zapraszamy do zapoznania się z nim!
Sortowanie przez wstawianie (1) Przykład sortowania przez wstawianie

Sortowanie przez wstawianie (ang. insertion sort) – prosty algorytm sortowania polegający na wstawianiu kolejnych elementów ciągu we właściwe miejsca. Złożoności czasowa algorytmu wynosi O(n2). Jest to algorytm realizujący metodę przyrostową.

Działanie algorytmu

Sortowany ciąg dzielony jest na część posortowaną i nieposortowaną. Na początku w części posortowanej znajduje się tylko jeden element (pierwszy). W każdym kolejnym kroku bierzemy pierwszy element z części nieposortowanej i wstawiamy we właściwe miejsce części posortowanej. Aby to zrobić, wstawiany element porównujemy kolejno z ostatnim elementem posortowanej części ciągu, z przedostatnim itd. Algorytm kończy się, gdy wszystkie elementy znajdują się w części posortowanej.

Przykładowy kod źródłowy w języku C jest umieszczony poniżej. Kod ten realizuje sortowanie rosnące.

void sortowanie_przez_wstawianie(int* tab, int n)
{
    int i, j, t;

    for (i = 1; i < n; ++i)
    {
        j = i;
        while ( (j > 0) && (tab[j-1] > tab[j]) ) 
        {
            t = tab[j];
            tab[j] = tab[j-1];
            tab[j-1] = t;
            --j;
        } 
    } 
}

Złożoność czasowa

Główna pętla algorytmu wykona się n-1 razy (n jest liczbą elementów do posortowania). W każdym wykonaniu pętli głównej wystąpi od 1 do j porównań, gdzie j jest numerem aktualnego wykonania pętli. W przypadku pesymistycznym algorytm wykona 1+…+(n-1)+(n-2)=(n-1)*n/2 porównań, czyli tyle samo, co algorytm sortowania bąbelkowego. Jednak w przypadku optymistycznym (sortowanie posortowanego ciągu) w każdym wykonaniu pętli głównej odbędzie się tylko jedno porównanie, co daje łącznie jedynie n-1 porównań (złożoność optymistyczna jest zatem liniowa).

Policzmy teraz, jaka jest średnia złożoność algorytmu. Jak już wspomniano, w każdym wykonaniu pętli głównej wystąpi od 1 do j porównań. Zakładając, że każda z tych liczb jest tak samo prawdopodobna, średnia liczba porównań wynosi (j+1)/2. W całym algorytmie wystąpi zatem (1+1)/2+(2+1)/2+…+n/2 porównań, czyli (n-1)(n+2)/4. Nadal jest to złożoność kwadratowa, jednak jest to algorytm szybszy od sortowania bąbelkowego. Przewaga sortowania przez proste wstawianie będzie tym większa, im większe będzie prawdopodobieństwo, że elementy w ciągu już na początku są częściowo posortowane.

Ocena: +7 Tak Nie
Liczba głosów: 11.

Dodano: 29 września 2016 11:53, ostatnia edycja: 28 czerwca 2017 15:19.

REKLAMA

Zobacz też

Powtarzalny algorytm najbliższego sąsiada (ang. repetitive nearest neighbour algorithm, w skrócie RNN) – algorytm służący do rozwiązywania problemu komiwojażera korzystający z algorytmu najbliższego sąsiada.

Algorytm polega na wielokrotnym wykonaniu algorytmu najbliższego sąsiada w taki sposób, aby każdy wierzchołek raz był wierzchołkiem początkowym. Następnie algorytm zwraca najlepsze spośród otrzymanych rozwiązań.

Dla grafu pełnego algorytm ma złożoność O(n3), gdzie n jest liczbą wierzchołków. W trakcie wykonywania algorytmu RNN n razy zostanie wykonany algorytm najbliższego sąsiada, który ma złożoność czasową O(n2).

Algorytm RNN nie daje gwarancji znalezienia rozwiązania optymalnego. W odróżnieniu od algorytmu najbliższego sąsiada daje jednak gwarancję, że zwróci rozwiązanie co najmniej tak dobre, jak n/2-1 innych rozwiązań (dowód i więcej informacji na ten temat znajduje się w pracy podanej w bibliografii).

→ Czytaj całość

Dziel i zwyciężaj (ang. divide and conquer) – technika projektowania algorytmów polegająca na podejściu rekurencyjnym. W technice tej problem dzielony jest na mniejsze podproblemy, te podproblemy na jeszcze mniejsze podproblemy, aż dojdzie się do przypadków trywialnych (np. posortowanie jednoelementowej tablicy, obliczenie silni z 1).

Jeśli rozpatrywany problem wymaga podzielenia na podproblemy, jest on określany jako przypadek rekurencyjny. Jeśli mamy do czynienia z przypadkiem trywialnym, jest to przypadek bazowy. Tworząc algorytm wykorzystujący metodę dziel i zwyciężaj musimy ustalić:

  • Jak rozwiązać przypadek bazowy (trywialny).
  • Jak wyznaczyć rozwiązanie problemu, mając dostępne rozwiązania podproblemów.

Przykładem algorytmu opartego na tej metodzie jest sortowanie przez scalanie.

→ Czytaj całość

Metoda Otsu – algorytm służący do binaryzacji obrazu, czyli przekształcenia obrazu w odcieniach szarości do obrazu binarnego. Metoda ta realizuje progowanie globalne – dla całego obrazu wyznaczany jest jeden próg jasności, a następnie wszystkim pikselom jaśniejszym od tego progu przypisywana jest jedna wartość, a ciemniejszym druga.

Algorytm jest oparty na analizie histogramu. Przygotowanie histogramu polega na zliczeniu pikseli w każdym możliwym odcieniu (zazwyczaj liczba odcieni wynosi 256, gdyż tyle da się zakodować w jednym bajcie). Następnie należy sprawdzić każdy możliwy próg jasności i wybrać ten, dla którego wariancja międzyklasowa jest największa (lub suma ważona wariancji wewnątrzklasowych jest najmniejsza).

Jeśli obrazem wejściowym jest obraz kolorowy, można go łatwo sprowadzić do odcieni szarości. W przypadku kolorów zakodowanych w RGB najprostszym rozwiązaniem jest uśrednienie dla każdego piksela wartości wszystkich trzech kanałów.

→ Czytaj całość
Polityka prywatnościKontakt