Sortowanie przez wstawianie

Tutorial
Na ten temat mamy również tutorial „Sortowanie przez wstawianie”, który ilustruje działanie algorytmu krok po kroku. Zapraszamy do zapoznania się z nim!
Sortowanie przez wstawianie (1) Przykład sortowania przez wstawianie

Sortowanie przez wstawianie (ang. insertion sort) – prosty algorytm sortowania polegający na wstawianiu kolejnych elementów ciągu we właściwe miejsca. Złożoności czasowa algorytmu wynosi O(n2). Jest to algorytm realizujący metodę przyrostową.

Działanie algorytmu

Sortowany ciąg dzielony jest na część posortowaną i nieposortowaną. Na początku w części posortowanej znajduje się tylko jeden element (pierwszy). W każdym kolejnym kroku bierzemy pierwszy element z części nieposortowanej i wstawiamy we właściwe miejsce części posortowanej. Aby to zrobić, wstawiany element porównujemy kolejno z ostatnim elementem posortowanej części ciągu, z przedostatnim itd. Algorytm kończy się, gdy wszystkie elementy znajdują się w części posortowanej.

Przykładowy kod źródłowy w języku C jest umieszczony poniżej. Kod ten realizuje sortowanie rosnące.

void sortowanie_przez_wstawianie(int* tab, int n)
{
    int i, j, t;

    for (i = 1; i < n; ++i)
    {
        j = i;
        while ( (j > 0) && (tab[j-1] > tab[j]) ) 
        {
            t = tab[j];
            tab[j] = tab[j-1];
            tab[j-1] = t;
            --j;
        } 
    } 
}

Złożoność czasowa

Główna pętla algorytmu wykona się n-1 razy (n jest liczbą elementów do posortowania). W każdym wykonaniu pętli głównej wystąpi od 1 do j porównań, gdzie j jest numerem aktualnego wykonania pętli. W przypadku pesymistycznym algorytm wykona 1+…+(n-1)+(n-2)=(n-1)*n/2 porównań, czyli tyle samo, co algorytm sortowania bąbelkowego. Jednak w przypadku optymistycznym (sortowanie posortowanego ciągu) w każdym wykonaniu pętli głównej odbędzie się tylko jedno porównanie, co daje łącznie jedynie n-1 porównań (złożoność optymistyczna jest zatem liniowa).

Policzmy teraz, jaka jest średnia złożoność algorytmu. Jak już wspomniano, w każdym wykonaniu pętli głównej wystąpi od 1 do j porównań. Zakładając, że każda z tych liczb jest tak samo prawdopodobna, średnia liczba porównań wynosi (j+1)/2. W całym algorytmie wystąpi zatem (1+1)/2+(2+1)/2+…+n/2 porównań, czyli (n-1)(n+2)/4. Nadal jest to złożoność kwadratowa, jednak jest to algorytm szybszy od sortowania bąbelkowego. Przewaga sortowania przez proste wstawianie będzie tym większa, im większe będzie prawdopodobieństwo, że elementy w ciągu już na początku są częściowo posortowane.

Ocena: 0 Tak Nie
Liczba głosów: 0.

Dodano: 29 września 2016 11:53, ostatnia edycja: 28 czerwca 2017 15:19.

REKLAMA

Zobacz też

Algorytmy zachłanne (ang. greedy algorithms) – algorytmy podejmujące w każdym kroku taką decyzję, która w danej chwili wydaje się najkorzystniejsza. Inaczej mówiąc, algorytmy zachłanne dokonują zawsze wyborów lokalnie optymalnych licząc, że doprowadzi to do znalezienia rozwiązania globalnie optymalnego. W ogólnym przypadku algorytmy zachłanne nie zawsze znajdują rozwiązanie optymalne. Są one zatem podzbiorem algorytmów heurystycznych. Jednocześnie są to algorytmy deterministyczne – nie ma w nich losowości.

Bardzo prostym przykładem algorytmu zachłannego może być szukanie najwyższego punktu na określonym obszarze poprzez przesuwanie się zawsze w kierunku największego nachylenia (nigdy się nie cofając ani nie rozpatrując kilku wariantów drogi). Jak widać, w ten sposób prawdopodobnie dojdziemy do wierzchołka położonego najbliżej od punktu początkowego, który niekoniecznie będzie najwyższym.

→ Czytaj całość

Metoda Otsu – algorytm służący do binaryzacji obrazu, czyli przekształcenia obrazu w odcieniach szarości do obrazu binarnego. Metoda ta realizuje progowanie globalne – dla całego obrazu wyznaczany jest jeden próg jasności, a następnie wszystkim pikselom jaśniejszym od tego progu przypisywana jest jedna wartość, a ciemniejszym druga.

Algorytm jest oparty na analizie histogramu. Przygotowanie histogramu polega na zliczeniu pikseli w każdym możliwym odcieniu (zazwyczaj liczba odcieni wynosi 256, gdyż tyle da się zakodować w jednym bajcie). Następnie należy sprawdzić każdy możliwy próg jasności i wybrać ten, dla którego wariancja międzyklasowa jest największa (lub suma ważona wariancji wewnątrzklasowych jest najmniejsza).

Jeśli obrazem wejściowym jest obraz kolorowy, można go łatwo sprowadzić do odcieni szarości. W przypadku kolorów zakodowanych w RGB najprostszym rozwiązaniem jest uśrednienie dla każdego piksela wartości wszystkich trzech kanałów.

→ Czytaj całość

Metoda przyrostowa – technika projektowania algorytmów polegająca na dodawaniu do rozwiązania kolejnych elementów z danych wejściowych. Przykładem algorytmu opartego na tej metodzie jest sortowanie przez wstawianie, gdzie kolejne elementy są wstawiane do posortowanej części tablicy.

Jest to metoda prosta, jednak sprawdza się tylko dla niektórych problemów obliczeniowych.

→ Czytaj całość
Polityka prywatnościKontakt