Algorytmy, struktury danych i techniki programowania. Wydanie V
49,00 zł
JavaScript. Wyrażenia regularne dla programistów
−30%34,30 zł
Opus magnum C++11. Programowanie w języku C++ (komplet)
149,00 zł
Kwalifikacja EE.08. Montaż i eksploatacja systemów komputerowych, urządzeń peryferyjnych i sieci. Część 2. Systemy operacyjne. Podręcznik do nauki zawodu technik informatyk
37,95 zł
Hartowanie Linuksa we wrogich środowiskach sieciowych. Ochrona serwera od TLS po Tor
59,00 zł
Zajęcia rewalidacyjne. Zeszyt ćwiczeń dla szkoły podstawowej, klasy 4-6
14,90 zł

Algorytm Floyda-Warshalla

Tutorial
Na ten temat mamy również tutorial „Algorytm Floyda-Warshalla”, który ilustruje działanie algorytmu krok po kroku. Zapraszamy do zapoznania się z nim!

Algorytm Floyda-Warshalla – algorytm służący do wyznaczania najkrótszych ścieżek pomiędzy każdą parą wierzchołków w grafie. Jest to algorytm oparty na programowaniu dynamicznym. Algorytm ma złożoność czasową O(n3) i złożoność pamięciową O(n2), gdzie n jest liczbą wierzchołków.

Algorytm dopuszcza krawędzie o ujemnych wagach, o ile nie tworzą ujemnych cykli. Algorytm może być również wykorzystywany do wyszukiwania ujemnych cykli w grafie.

Działanie algorytmu

Tworzymy dwie macierze o wymiarach n na n. W pierwszej macierzy będziemy przechowywać odległości między punktami, w drugiej identyfikatory przedostatnich punktów na ścieżce łączącej punkty. Bardziej formalnie, wartość di,j oznacza odległość z punktu i do punktu j, a wartość pi,j oznacza punkt poprzedzający punkt j na ścieżce z punktu i do punktu j.

Na początku inicjujemy wartości w macierzach. Jeśli istnieje krawędź prowadząca z punktu i do punktu j, to wartości di,j przypisujemy długość tej krawędzi, a wartość pi,j ustawiamy na i. W przeciwnym razie wartości di,j przypisujemy nieskończoność, a wartość pi,j traktujemy jako niezdefiniowaną. Długości ścieżek prowadzących do tego samego punktu, z którego wychodzą, ustawiamy na 0.

Następnie wykonujemy zasadniczą część algorytmu:

  • Dla każdego punktu u ze zbioru wierzchołków:
    • Dla każdego punktu v1 ze zbioru wierzchołków:
      • Dla każdego punktu v2 ze zbioru wierzchołków:
        • Jeśli dv1, v2 > dv1, u + du, v2, to:
          • dv1, v2 = dv1, u + du, v2,
          • pv1, v2 = pu, v2.

Po wykonaniu algorytmu macierze zawierają optymalne rozwiązania. Ścieżkę między dwoma dowolnymi punktami można odczytać wykorzystując wartości znajdujące się w macierzy p. Jeśli po wykonaniu algorytmu wartość di,j nadal wynosi nieskończoność, to oznacza, że nie istnieje żadna ścieżka prowadząca z punktu i do punktu j.

Jeśli po wykonaniu algorytmu na głównej przekątnej macierzy odległości znajduje się wartość mniejsza od zera, to graf zawiera ujemny cykl.

Złożoność obliczeniowa

Algorytm zawiera trzy zagnieżdżone pętle, w każdej z nich przeglądane są wszystkie wierzchołki. Złożoność czasowa algorytmu wynosi zatem O(n3) (n jest liczbą wierzchołków). Dane są przechowywane w dwóch macierzach o wymiarach n na n. Złożoność pamięciowa algorytmu wynosi zatem O(n2).

Ocena: 0 Tak Nie
Liczba głosów: 0.

Dodano: 9 sierpnia 2017 13:51, ostatnia edycja: 10 sierpnia 2017 15:02.

Zobacz też

Programowanie dynamiczne – technika projektowania algorytmów polegająca na rozwiązywaniu podproblemów i zapamiętywaniu ich wyników. W technice tej, podobnie jak w metodzie dziel i zwyciężaj, problem dzielony jest na mniejsze podproblemy. Wyniki rozwiązywania podproblemów są jednak zapisywane w tabeli, dzięki czemu w przypadku natrafienia na ten sam podproblem nie trzeba go ponownie rozwiązywać.

Wykorzystując programowanie dynamiczne można zastosować metodę zstępującą z zapamiętywaniem lub metodę wstępującą.

  • Metoda zstępująca z zapamiętywaniem polega na rekurencyjnym wywoływaniu funkcji z zapamiętywaniem wyników. Metoda ta jest podobna do metody dziel i zwyciężaj – różni się od niej tym, że jeśli rozwiązanie danego problemu jest już w tabeli z wynikami, to należy je po prostu stamtąd odczytać.
  • Metoda wstępująca polega na rozwiązywaniu wszystkich możliwych podproblemów, zaczynając od tych o najmniejszym rozmiarze. Wówczas w momencie rozwiązywania podproblemu na pewno są już dostępne rozwiązania jego podproblemów. W tym podejściu nie zużywa się pamięci na rekurencyjne wywołania funkcji. Może się jednak okazać, że część podproblemów została rozwiązana nadmiarowo (nie były one potrzebne do rozwiązania głównego problemu).
→ Czytaj całość

Ten artykuł opisuje algorytm rozwiązujący problem wydawania reszty oparty na programowaniu dynamicznym. Algorytm ten daje gwarancję znalezienia rozwiązania optymalnego.

Istnieje również pewna modyfikacja tego algorytmu, która została opisana w osobnym artykule.

→ Czytaj całość

Algorytm heurystyczny, heurystyka – algorytm poszukujący najlepszego spośród wielu dostępnych rozwiązań. Algorytmy heurystyczne w ogólnym przypadku nie dają gwarancji znalezienia rozwiązania optymalnego, jednak pozwalają znaleźć rozwiązanie dość dobre w stosunkowo krótkim czasie.

Pojęcie algorytmów heurystycznych jest bardzo szerokie, dotyczy ono różnych technik projektowania algorytmów. Wiele heurystyk wykorzystuje losowość, inne zaś są deterministyczne (wówczas dla takich samych danych wejściowych algorytm zawsze zwróci ten sam wynik).

Ogólny algorytm heurystyczny (opisujący samą ideę poszukiwań) bywa określany w literaturze jako metaheurystyka. Zgodnie z tym nazewnictwem, metaheurystyką jest np. algorytm zachłanny (jako ogólna idea), zaś heurystyką jest np. algorytm najbliższego sąsiada (jako zastosowanie idei algorytmu zachłannego do konkretnego problemu).

→ Czytaj całość
Polityka prywatnościKontakt