Algorytm najmniejszej krawędzi

Info
Nazwa tego artykułu jest autorskim tłumaczeniem. Prawdopodobnie nie jest to nazwa oficjalnie używana w polskiej literaturze.
Algorytm najkrótszej krawędzi (1) Przykładowe wykonanie algorytmu
Algorytm najmniejszej krawędzi – algorytm służący do rozwiązywania problemu komiwojażera. Jest to algorytm wykorzystujący strategię zachłanną, jednak w inny sposób, niż algorytm najbliższego sąsiada. W anglojęzycznej literaturze algorytm jest najczęściej określany po prostu jako greedy algorithm (algorytm zachłanny), w skrócie GR.

Działanie algorytmu

Algorytm działa podobnie do algorytmu Kruskala poszukującego minimalnego drzewa rozpinającego. Polega on na kolejnym dołączaniu do rozwiązania najkrótszych spośród dopuszczalnych krawędzi. Działanie algorytmu można zapisać następująco:

  1. Posortuj wszystkie krawędzie rosnąco według ich wag, umieść je w kolejce.
  2. Pobierz z kolejki krawędź o najmniejszej wadze, usuń ją z kolejki.
  3. Sprawdź, czy dołączenie tej krawędzi do rozwiązania nie spowoduje utworzenia cyklu (nie dotyczy ostatniej iteracji) lub powstania wierzchołka, z którego wychodzą trzy krawędzie. Jeśli nie, dołącz krawędź do rozwiązania.
  4. Jeśli liczba krawędzi dołączonych do rozwiązania jest równa liczbie wierzchołków, zakończ działanie algorytmu. W przeciwnym razie przejdź do punktu 2.

Złożoność i ocena jakości

Główna pętla algorytmu wykona się maksymalnie n2 razy (n jest liczbą krawędzi). W trakcie każdego przebiegu pętli trzeba jednak sprawdzić, czy daną krawędź można dołączyć do rozwiązania. Złożoność obliczeniowa algorytmu zależy od sposobu implementacji sprawdzania tego warunku, a także od sposobu sortowania kolejki krawędzi. Według pracy [1] złożoność obliczeniowa algorytmu to O(n2log n).

Algorytm nie daje gwarancji znalezienia rozwiązania optymalnego. Według wspomnianej pracy [1] rozwiązania znalezione przez ten algorytm są średnio o ok. 16% gorsze od optymalnych.

Bibliografia

Ocena: 0 Tak Nie
Liczba głosów: 0.

Dodano: 19 października 2016 19:21, ostatnia edycja: 30 stycznia 2019 13:12.

REKLAMA

Zobacz też

Ten artykuł opisuje algorytm rozwiązujący problem wydawania reszty oparty na programowaniu dynamicznym. Algorytm ten daje gwarancję znalezienia rozwiązania optymalnego.

Istnieje również pewna modyfikacja tego algorytmu, która została opisana w osobnym artykule.

→ Czytaj całość

Powtarzalny algorytm najbliższego sąsiada (ang. repetitive nearest neighbour algorithm, w skrócie RNN) – algorytm służący do rozwiązywania problemu komiwojażera korzystający z algorytmu najbliższego sąsiada.

Algorytm polega na wielokrotnym wykonaniu algorytmu najbliższego sąsiada w taki sposób, aby każdy wierzchołek raz był wierzchołkiem początkowym. Następnie algorytm zwraca najlepsze spośród otrzymanych rozwiązań.

Dla grafu pełnego algorytm ma złożoność O(n3), gdzie n jest liczbą wierzchołków. W trakcie wykonywania algorytmu RNN n razy zostanie wykonany algorytm najbliższego sąsiada, który ma złożoność czasową O(n2).

Algorytm RNN nie daje gwarancji znalezienia rozwiązania optymalnego. W odróżnieniu od algorytmu najbliższego sąsiada daje jednak gwarancję, że zwróci rozwiązanie co najmniej tak dobre, jak n/2-1 innych rozwiązań (dowód i więcej informacji na ten temat znajduje się w pracy podanej w bibliografii).

→ Czytaj całość

K-opt, algorytm k-optymalny – algorytm lokalnej optymalizacji wykorzystywany przy rozwiązywaniu problemu komiwojażera. Algorytm ten nie służy do samego wyznaczania trasy, a jedynie do ulepszania jej. Najprostszą wersją tego algorytmu jest algorytm 2-optymalny.

→ Czytaj całość
Polityka prywatnościKontakt