Programowanie w języku C. Ćwiczenia praktyczne. Wydanie II
19,90 zł
Biblia e-biznesu 2. Nowy Testament
−30%90,30 zł
Algorytmy, struktury danych i techniki programowania. Wydanie V
49,00 zł
Młodzi giganci programowania. Scratch
34,90 zł
Algorytmy. Ilustrowany przewodnik
54,90 zł
Visual Studio 2017. Tworzenie aplikacji Windows w języku C#
89,00 zł

Algorytm najmniejszej krawędzi

Info
Nazwa tego artykułu jest autorskim tłumaczeniem. Prawdopodobnie nie jest to nazwa oficjalnie używana w polskiej literaturze.
Algorytm najkrótszej krawędzi Przykładowe wykonanie algorytmu
REKLAMA
Algorytm najmniejszej krawędzi – algorytm służący do rozwiązywania problemu komiwojażera. Jest to algorytm wykorzystujący strategię zachłanną, jednak w inny sposób, niż algorytm najbliższego sąsiada. W anglojęzycznej literaturze algorytm jest najczęściej określany po prostu jako greedy algorithm (algorytm zachłanny), w skrócie GR.

Działanie algorytmu

Algorytm działa podobnie do algorytmu Kruskala poszukującego minimalnego drzewa rozpinającego. Polega on na kolejnym dołączaniu do rozwiązania najkrótszych spośród dopuszczalnych krawędzi. Działanie algorytmu można zapisać następująco:

  1. Posortuj wszystkie krawędzie rosnąco według ich wag, umieść je w kolejce.
  2. Pobierz z kolejki krawędź o najmniejszej wadze, usuń ją z kolejki.
  3. Sprawdź, czy dołączenie tej krawędzi do rozwiązania nie spowoduje utworzenia cyklu (nie dotyczy ostatniej iteracji) lub powstania wierzchołka, z którego wychodzą trzy krawędzie. Jeśli nie, dołącz krawędź do rozwiązania.
  4. Jeśli liczba krawędzi dołączonych do rozwiązania jest równa liczbie wierzchołków, zakończ działanie algorytmu. W przeciwnym razie przejdź do punktu 2.

Złożoność i ocena jakości

Główna pętla algorytmu wykona się maksymalnie n2 razy (n jest liczbą krawędzi). W trakcie każdego przebiegu pętli trzeba jednak sprawdzić, czy daną krawędź można dołączyć do rozwiązania. Złożoność obliczeniowa algorytmu zależy od sposobu implementacji sprawdzania tego warunku, a także od sposobu sortowania kolejki krawędzi. Według pracy The Traveling Salesman Problem: A Case Study in Local Optimization (link w bibliografii) złożoność obliczeniowa algorytmu to O(n2log n).

Algorytm nie daje gwarancji znalezienia rozwiązania optymalnego. Według wspomnianej pracy The Traveling Salesman Problem: A Case Study in Local Optimization rozwiązania znalezione przez ten algorytm są średnio o ok. 16% gorsze od optymalnych. Istnieją przypadki, w których algorytm najbliższego sąsiada daje najgorsze możliwe rozwiązanie.

Bibliografia

  1. D.S. Johnson, L.A. McGeoch, The Traveling Salesman Problem: A Case Study in Local Optimization (link) [dostęp: 21 listopada 2017].
  2. G. Gutin, A. Yeo, A. Zverovich, Traveling salesman should not be greedy: domination analysis of greedy-type heuristics for the TSP (link) [dostęp: 21 listopada 2017].
Ocena: 0 Tak Nie
Liczba głosów: 0.

Dodano: 19 października 2016 19:21, ostatnia edycja: 21 listopada 2017 19:10.

REKLAMA

Zobacz też

Minimalne drzewo rozpinające (ang. minimum spanning tree, w skrócie MST), inaczej drzewo rozpinające o minimalnej wadze – drzewo łączące wszystkie wierzchołki pewnego grafu spójnego mające najmniejszą możliwą sumę wag krawędzi.

Jeśli graf ma v wierzchołków, to jego drzewo rozpinające zawsze będzie miało v-1 krawędzi. Jeśli ten graf ma e krawędzi, aby utworzyć drzewo rozpinające, trzeba usunąć z grafu e-v+1 krawędzi. Liczba ta jest określana jako liczba cyklomatryczna.

→ Czytaj całość

Algorytm Helda-Karpa (czasami określany jako algorytm Bellmana-Helda-Karpa) – algorytm służący do rozwiązywania problemu komiwojażera. Jest to algorytm dokładny oparty na programowaniu dynamicznym. Algorytm ma złożoność czasową O(n22n) i złożoność pamięciową O(n2n). Jest to co prawda złożoność gorsza od wielomianowej, ale algorytm ten jest znacznie lepszy od algorytmu sprawdzającego wszystkie warianty (złożoność czasowa O(n!)).

→ Czytaj całość

Algorytm genetycznymetaheurystyka inspirowana biologiczną ewolucją.

Pojęcie algorytmu genetycznego nie jest powiązane z żadnym konkretnym problemem obliczeniowym, algorytm ten może być wykorzystywany do rozwiązywania różnych problemów. Algorytm genetyczny nie próbuje rozwiązywać problemu w sposób analityczny, ale próbuje uzyskać jak najlepsze rozwiązania poprzez wybieranie jak najlepszych cech rozwiązań z określonej puli. Implementując algorytm genetyczny należy przedstawić potencjalne rozwiązanie problemu w postaci jakiejś struktury danych, a następnie zdefiniować operacje krzyżowania, mutacji i selekcji. Zakładamy, że z każdym kolejnym pokoleniem rozwiązania występujące w populacji będą coraz lepsze.

→ Czytaj całość
Polityka prywatnościKontakt