Algorytmy zachłanne

Algorytm najbliższego sąsiada animacja (1) Algorytm najbliższego sąsiada – przykład algorytmu zachłannego
REKLAMA

Architektura API. Projektowanie, używanie i rozwijanie systemów opartych na API
−40%41,40 zł
Algorytmy uczenia maszynowego. Zaawansowane techniki implementacji
89,00 zł

Algorytmy zachłanne (ang. greedy algorithms) – algorytmy podejmujące w każdym kroku taką decyzję, która w danej chwili wydaje się najkorzystniejsza. Inaczej mówiąc, algorytmy zachłanne dokonują zawsze wyborów lokalnie optymalnych licząc, że doprowadzi to do znalezienia rozwiązania globalnie optymalnego. W ogólnym przypadku algorytmy zachłanne nie zawsze znajdują rozwiązanie optymalne. Są one zatem podzbiorem algorytmów heurystycznych. Jednocześnie są to algorytmy deterministyczne – nie ma w nich losowości.

Bardzo prostym przykładem algorytmu zachłannego może być szukanie najwyższego punktu na określonym obszarze poprzez przesuwanie się zawsze w kierunku największego nachylenia (nigdy się nie cofając ani nie rozpatrując kilku wariantów drogi). Jak widać, w ten sposób prawdopodobnie dojdziemy do wierzchołka położonego najbliżej od punktu początkowego, który niekoniecznie będzie najwyższym.

Przykłady algorytmów dokładnych

Choć generalnie algorytmy zachłanne nie zawsze znajdują rozwiązanie optymalne, to istnieją takie problemy obliczeniowe, dla których algorytmy te dają gwarancję znalezienia rozwiązania optymalnego. Przykładami takich algorytmów są:

Ciekawym przypadkiem jest problem wydawania reszty, gdzie algorytm zachłanny w zależności od zbioru nominałów daje gwarancję znalezienia rozwiązania optymalnego albo nie.

Przykłady algorytmów niedokładnych

Algorytmy zachłanne są również wykorzystywane tam, gdzie nie dają gwarancji znalezienia rozwiązania optymalnego. Przykładami takich algorytmów są algorytmy rozwiązujące problem komiwojażera:

Własności problemów

Aby algorytm zachłanny zawsze zwracał rozwiązanie optymalne, problem powinien mieć dwie własności:

  • Własność optymalnej podstruktury – własność oznaczająca, że optymalne rozwiązanie problemu jest funkcją optymalnych rozwiązań podproblemów (czyli znając optymalne rozwiązania podproblemów można efektywnie wyznaczyć rozwiązanie problemu). Własność ta jest wspólna dla metody zachłannej i dla programowania dynamicznego.
  • Własność wyboru zachłannego – własność oznaczająca, że za pomocą lokalnie optymalnych wyborów można znaleźć rozwiązanie globalnie optymalne. Mówiąc inaczej: wystarczy rozwiązać tylko ten podproblem, który można ocenić jako najbardziej obiecujący.

Matroidy a strategia zachłanna

W ocenianiu, czy dany problem można rozwiązać z wykorzystaniem metody zachłannej, przydatna jest teoria związana z matroidami. Jeśli problem obliczeniowy można przedstawić jako poszukiwanie podzbioru o największej wadze w matroidzie ważonym, to problem ten można rozwiązać stosując metodę zachłanną (algorytm zachłanny będzie zwracał rozwiązanie optymalne).

Bibliografia

  • T.H. Cormen, Ch.E. Leiserson, R.L. Rivest, C. Stein, Wprowadzenie do algorytmów, Wydawnictwo Naukowe PWN, Warszawa, 2012, ISBN 9788301169114.
Ocena: +21 Tak Nie
Liczba głosów: 31.

Dodano: 8 lipca 2017 14:53, ostatnia edycja: 24 kwietnia 2020 19:17.

REKLAMA

Zobacz też

Przeszukiwanie w głąb (ang. depth-first search, w skrócie DFS) – jeden z dwóch podstawowych algorytmów przeszukiwania grafu. Polega na przechodzeniu zawsze do kolejnego nieodwiedzonego wierzchołka. Jeśli dany wierzchołek nie ma nieodwiedzonych sąsiadów, wracamy do poprzedniego wierzchołka i sprawdzamy jego sąsiadów. Mówiąc obrazowo, w algorytmie tym wchodzimy tak głęboko, jak to możliwe (przechodzimy dalej, dopóki się da).

Algorytm można zapisać w sposób rekurencyjny. Wywoływana rekurencyjnie procedura działa następująco: oznacz wierzchołek jako odwiedzony, a następnie wywołaj tę procedurę dla każdego sąsiada danego wierzchołka, jeśli nie został on wcześniej odwiedzony. Na początku wywołujemy procedurę dla wierzchołka początkowego.

→ Czytaj całość
Algorytm najmniejszej krawędzi – algorytm służący do rozwiązywania problemu komiwojażera. Jest to algorytm wykorzystujący strategię zachłanną, jednak w inny sposób, niż algorytm najbliższego sąsiada. W anglojęzycznej literaturze algorytm jest najczęściej określany po prostu jako greedy algorithm (algorytm zachłanny), w skrócie GR.
→ Czytaj całość

Algorytm genetyczny – jedna z metaheurystyk inspirowanych biologiczną ewolucją.

Pojęcie algorytmu genetycznego nie jest powiązane z żadnym konkretnym problemem obliczeniowym, algorytm ten może być wykorzystywany do rozwiązywania różnych problemów. Algorytm genetyczny nie próbuje rozwiązywać problemu w sposób analityczny, ale próbuje uzyskać jak najlepsze rozwiązania poprzez wybieranie jak najlepszych cech rozwiązań z określonej puli. Implementując algorytm genetyczny należy przedstawić potencjalne rozwiązanie problemu w postaci jakiejś struktury danych, a następnie zdefiniować operacje krzyżowania, mutacji i selekcji. Zakładamy, że z każdym kolejnym pokoleniem rozwiązania występujące w populacji będą coraz lepsze.

→ Czytaj całość
Polityka prywatnościKontakt