Programowanie w języku C. Ćwiczenia praktyczne. Wydanie II
19,90 zł
Szkoła programisty PLC. Język LAD w programowaniu sterowników przemysłowych
−30%41,30 zł
Algorytmy bez tajemnic
44,90 zł
Czysty kod. Podręcznik dobrego programisty
69,00 zł
Cyberwojna. Metody działania hakerów
49,00 zł
Bitcoin dla zaawansowanych. Programowanie z użyciem otwartego łańcucha bloków. Wydanie II
69,00 zł

Algorytmy zachłanne

Algorytm najbliższego sąsiada animacja Algorytm najbliższego sąsiada – przykład algorytmu zachłannego

Algorytmy zachłanne (ang. greedy algorithms) – algorytmy podejmujące w każdym kroku taką decyzję, która w danej chwili wydaje się najkorzystniejsza. Inaczej mówiąc, algorytmy zachłanne dokonują zawsze wyborów lokalnie optymalnych licząc, że doprowadzi to do znalezienia rozwiązania globalnie optymalnego. W ogólnym przypadku algorytmy zachłanne nie zawsze znajdują rozwiązanie optymalne. Są one zatem podzbiorem algorytmów heurystycznych. Jednocześnie są to algorytmy deterministyczne – nie ma w nich losowości.

Bardzo prostym przykładem algorytmu zachłannego może być szukanie najwyższego punktu na określonym obszarze poprzez przesuwanie się zawsze w kierunku największego nachylenia (nigdy się nie cofając ani nie rozpatrując kilku wariantów drogi). Jak widać, w ten sposób prawdopodobnie dojdziemy do wierzchołka położonego najbliżej od punktu początkowego, który niekoniecznie będzie najwyższym.

Przykłady algorytmów dokładnych

Choć generalnie algorytmy zachłanne nie zawsze znajdują rozwiązanie optymalne, to istnieją takie problemy obliczeniowe, dla których algorytmy te dają gwarancję znalezienia rozwiązania optymalnego. Przykładami takich algorytmów są:

Ciekawym przypadkiem jest problem wydawania reszty, gdzie algorytm zachłanny w zależności od zbioru nominałów daje gwarancję znalezienia rozwiązania optymalnego albo nie.

Przykłady algorytmów niedokładnych

Algorytmy zachłanne są również wykorzystywane tam, gdzie nie dają gwarancji znalezienia rozwiązania optymalnego. Przykładami takich algorytmów są algorytmy rozwiązujące problem komiwojażera:

Własności problemów

Aby algorytm zachłanny zawsze zwracał rozwiązanie optymalne, problem powinien mieć dwie własności:

  • Własność optymalnej podstruktury – własność oznaczająca, że optymalne rozwiązanie problemu jest funkcją optymalnych rozwiązań podproblemów (czyli znając optymalne rozwiązania podproblemów można efektywnie wyznaczyć rozwiązanie problemu). Własność ta jest wspólna dla metody zachłannej i dla programowania dynamicznego.
  • Własność wyboru zachłannego – własność oznaczająca, że za pomocą lokalnie optymalnych wyborów można znaleźć rozwiązanie globalnie optymalne. Mówiąc inaczej: wystarczy rozwiązać tylko ten podproblem, który można ocenić jako najbardziej obiecujący.

Matroidy a strategia zachłanna

W ocenianiu, czy dany problem można rozwiązać z wykorzystaniem metody zachłannej, przydatna jest teoria związana z matroidami. Matroid jest strukturą składającą się z określonego zbioru elementów oraz z rodziny podzbiorów tego zbioru, która spełnia pewne warunki:

  • Jeśli zbiór należy do rodziny, to wszystkie jego podzbiory również.
  • Jeśli dwa zbiory o różnej liczbie elementów należą do rodziny, to istnieje w tym większym zbiorze taki element, który po dodaniu do mniejszego zbioru utworzy zbiór również należący do rodziny.

Jeśli każdy z elementów ma przyporządkowaną pewną wagę, to matroid jest określany jako matroid ważony. Jeśli problem obliczeniowy można przedstawić jako poszukiwanie podzbioru o największej wadze w matroidzie ważonym, to problem ten można rozwiązać stosując metodę zachłanną (algorytm zachłanny będzie zwracał rozwiązanie optymalne).

Bibliografia

  1. T.H. Cormen, Ch.E. Leiserson, R.L. Rivest, C. Stein, Wprowadzenie do algorytmów, Wydawnictwo Naukowe PWN, Warszawa, 2012.
Ocena: +1 Tak Nie
Liczba głosów: 3.

Dodano: 8 lipca 2017 14:53, ostatnia edycja: 8 lipca 2017 14:56.

Zobacz też

Metoda z zastosowaniem przepływu blokującego – algorytm wyznaczający maksymalny przepływ w sieci przepływowej. W algorytmie tym przepływ zwiększany jest iteracyjnie, w każdej iteracji wyznaczony przepływ jest powiększany o przepływ blokujący w warstwowej sieci residualnej.

→ Czytaj całość

Notacja dużego O – notacja przedstawiająca asymptotyczne tempo wzrostu, wykorzystywana do zapisywania złożoności obliczeniowej algorytmu. Za pomocą tej notacji zapisywany jest rząd wielkości funkcji wyrażającej liczbę operacji dominujących (w przypadku złożoności czasowej) lub rozmiar wymaganej pamięci (w przypadku złożoności pamięciowej) w zależności od liczby danych wejściowych.

Wykorzystując notację dużego O nie podajemy dokładnego wzoru funkcji, a jedynie jej najbardziej znaczący składnik, w dodatku z pominięciem stałego współczynnika. Przykładowo, funkcję postaci f(n)=5n2+20n+100 możemy zapisać jako O(n2). Zakładamy bowiem, że dla dostatecznie dużych n wpływ pomijanych elementów jest znikomy. Choć oczywiście dla małych n może się zdarzyć, że funkcja o gorszej złożoności będzie się wykonywała szybciej.

Weźmy dla przykładu funkcje f(n) = 1000n+2000 i g(n) = n2. Choć pierwsza funkcja ma pozornie bardzo duże stałe współczynniki, to dla n ≥ 1002 będzie ona przyjmowała wartości mniejsze. Im większe n, tym ta różnica będzie wyraźniejsza. Dla n = 10000 (w przypadku danych przetwarzanych komputerowo nie jest to wielka wartość) f(n) = 10002000 (ok. 10 mln), a g(n) = 100000000 (100 mln), czyli blisko 10 razy więcej.

Możliwe jest również wykorzystanie notacji dużego O dla funkcji wielu zmiennych. Wówczas zapis może wyglądać tak: O(v2e). Znajduje to zastosowanie np. dla algorytmów operujących na grafach, gdzie złożoność zależy zarówno od liczby wierzchołków, jak i liczby krawędzi w grafie.

→ Czytaj całość
Sortowanie bąbelkowe (ang. bubble sort) – prosty algorytm sortowania polegający na porównywaniu za sobą sąsiednich elementów. Złożoności czasowa algorytmu wynosi O(n2).
→ Czytaj całość
Polityka prywatnościKontakt