Algorytm Dijkstry – algorytm służący do wyznaczania najkrótszych ścieżek w grafie. Wyznacza najkrótsze ścieżki z jednego wierzchołka (zwanego wierzchołkiem źródłowym) do pozostałych wierzchołków. Algorytm wymaga, aby wagi krawędzi grafu nie były ujemne. Autorem algorytmu jest holenderski naukowiec Edsger Dijkstra.
Algorytm realizuje podejście zachłanne. W każdej iteracji wybierany jest ten spośród nieodwiedzonych wierzchołków, do którego można dotrzeć najmniejszym kosztem. Po wyznaczeniu ścieżki do konkretnego wierzchołka nie zostanie ona zmodyfikowana w trakcie wykonywania dalszej części algorytmu.
W trakcie wykonywania algorytmu dla każdego wierzchołka zostają wyznaczone dwie wartości: koszt dotarcia do tego wierzchołka oraz poprzedni wierzchołek na ścieżce. Na początku działania algorytmu dla wierzchołka źródłowego koszt dotarcia wynosi 0 (już tam jesteśmy), a dla każdego innego wierzchołka nieskończoność (w ogóle nie wiemy, jak się tam dostać). Wszystkie wierzchołki na początku znajdują się w zbiorze Q (są to wierzchołki nieprzejrzane). Następnie algorytm przebiega następująco:
Oznaczmy liczbę wierzchołków przez n, a liczbę krawędzi przez e. Każda krawędź będzie analizowana jeden raz w przypadku grafu skierowanego lub dwa razy w przypadku grafu nieskierowanego. Oprócz analizy krawędzi w trakcie wykonywania algorytmu n razy przeszukuje się zbiór Q. W przypadku przechowywania zbioru Q w zwykłej tablicy wyszukanie wierzchołka odbywa się w czasie liniowym (O(n)). Wówczas złożoność czasowa algorytmu to O(n2+e). Biorąc pod uwagę, że w przypadku braku krawędzi wielokrotnych liczba krawędzi jest zawsze mniejsza od n2, można powiedzieć, że złożoność czasowa algorytmu to O(n2).
Jeśli zbiór Q będziemy przechowywać w postaci kopca, wyszukiwanie elementu będzie się odbywało w czasie O(logn). Jednak po każdej zmianie kosztu dotarcia do wierzchołka trzeba przebudować kopiec, co również odbywa się w czasie O(logn). Złożoność obliczeniowa algorytmu wyniesie wówczas O(elogn). Dla grafów rzadkich (liczba krawędzi mniejsza pod względem rzędu wielkości od n2/logn) jest to zatem rozwiązanie szybsze, ale dla grafów gęstych – wolniejsze.
Jeśli do przechowywania zbioru Q zastosujemy kopiec Fibonacciego, złożoność obliczeniowa algorytmu zmniejszy się do O(nlogn+e).
Dodano: 17 marca 2017 15:07, ostatnia edycja: 26 stycznia 2019 17:49.
Algorytm – przepis, zbiór poleceń, opis ciągu operacji prowadzących do rozwiązania konkretnego problemu. Algorytm możemy również rozumieć jako funkcję przekształcającą dane wejściowe w dane wyjściowe.
Algorytm musi być skończony, czyli jego zapis ma składać się ze skończonej liczby znaków. Musi również być poprawny, czyli dla wszystkich możliwych danych wejściowych powinien zwracać prawidłowy wynik (może być nim informacja o braku rozwiązania). Algorytm musi wykazywać również własność stopu – niezależnie od danych wejściowych obliczenia algorytmu powinny dochodzić do punktu końcowego, czyli po prostu kończyć się (nie mogą np. wpadać w nieskończoną iterację). Zapis algorytmu musi być precyzyjny, bez jakichkolwiek niejasności.
Bogosort – bardzo słaby algorytm sortowania oparty na metodzie prób i błędów. Polega na ustawianiu elementów w losowej kolejności i sprawdzaniu, czy są posortowane. Średnia złożoność tego algorytmu jest rzędu silnia, a w przypadku pesymistycznym algorytm będzie działał w nieskończoność.
Algorytm występuje też w nieco ulepszonej wersji, w której nie sprawdza się wielokrotnie tego samego ustawienia. Wówczas algorytm daje gwarancję znalezienia rozwiązania, jednak jego złożoność czasowa nadal jest rzędu silnia (w przypadku pesymistycznym trzeba sprawdzić wszystkie permutacje zbioru).
Ze względu na bardzo dużą złożoność czasową bogosort nie nadaje się do praktycznych zastosowań. Istnieją proste w implementacji, a znacznie wydajniejsze algorytmy sortujące, np. sortowanie przez wstawianie.
2-opt, algorytm 2-optymalny – algorytm lokalnej optymalizacji wykorzystywany przy rozwiązywaniu problemu komiwojażera. Jest to szczególny przypadek algorytmu k-optymalnego.
Algorytm 2-opt nie służy do wyznaczania trasy, a jedynie do ulepszania jej. Samą trasę można wyznaczyć np. za pomocą algorytmu najbliższego sąsiada. Algorytm może być wykorzystany do ulepszenia algorytmu genetycznego – w ten sposób powstanie algorytm memetyczny.