Algorytm Dijkstry

Tutorial
Na ten temat mamy również tutorial „Algorytm Dijkstry”, który ilustruje działanie algorytmu krok po kroku. Zapraszamy do zapoznania się z nim!
Algorytm Dijkstry animacja (1) Wykonanie algorytmu na przykładzie
REKLAMA

Generatywna sztuczna inteligencja z ChatGPT i modelami OpenAI. Podnieś swoją produktywność i innowacyjność za pomocą GPT3 i GPT4
−35%51,35 zł
Algorytmy
−35%44,85 zł

Algorytm Dijkstry – algorytm służący do wyznaczania najkrótszych ścieżek w grafie. Wyznacza najkrótsze ścieżki z jednego wierzchołka (zwanego wierzchołkiem źródłowym) do pozostałych wierzchołków. Algorytm wymaga, aby wagi krawędzi grafu nie były ujemne. Autorem algorytmu jest holenderski naukowiec Edsger Dijkstra.

Algorytm realizuje podejście zachłanne. W każdej iteracji wybierany jest ten spośród nieodwiedzonych wierzchołków, do którego można dotrzeć najmniejszym kosztem. Po wyznaczeniu ścieżki do konkretnego wierzchołka nie zostanie ona zmodyfikowana w trakcie wykonywania dalszej części algorytmu.

Opis działania algorytmu

W trakcie wykonywania algorytmu dla każdego wierzchołka zostają wyznaczone dwie wartości: koszt dotarcia do tego wierzchołka oraz poprzedni wierzchołek na ścieżce. Na początku działania algorytmu dla wierzchołka źródłowego koszt dotarcia wynosi 0 (już tam jesteśmy), a dla każdego innego wierzchołka nieskończoność (w ogóle nie wiemy, jak się tam dostać). Wszystkie wierzchołki na początku znajdują się w zbiorze Q (są to wierzchołki nieprzejrzane). Następnie algorytm przebiega następująco:

  • Dopóki zbiór Q nie jest pusty:
    • Pobierz ze zbioru Q wierzchołek o najmniejszym koszcie dotarcia. Oznacz go jako v i usuń ze zbioru Q.
    • Dla każdej krawędzi wychodzącej z wierzchołka v (oznaczmy ją jako k) wykonaj następujące czynności:
      • Oznacz wierzchołek znajdujący się na drugim końcu krawędzi k jako u.
      • Jeśli koszt dotarcia do wierzchołka u z wierzchołka v poprzez krawędź k jest mniejszy od aktualnego kosztu dotarcia do wierzchołka u, to:
        • Przypisz kosztowi dotarcia do wierzchołka u koszt dotarcia do wierzchołka v powiększony o wagę krawędzi k.
        • Ustaw wierzchołek v jako poprzednik wierzchołka u.

Złożoność czasowa

Oznaczmy liczbę wierzchołków przez n, a liczbę krawędzi przez e. Każda krawędź będzie analizowana jeden raz w przypadku grafu skierowanego lub dwa razy w przypadku grafu nieskierowanego. Oprócz analizy krawędzi w trakcie wykonywania algorytmu n razy przeszukuje się zbiór Q. W przypadku przechowywania zbioru Q w zwykłej tablicy wyszukanie wierzchołka odbywa się w czasie liniowym (O(n)). Wówczas złożoność czasowa algorytmu to O(n2+e). Biorąc pod uwagę, że w przypadku braku krawędzi wielokrotnych liczba krawędzi jest zawsze mniejsza od n2, można powiedzieć, że złożoność czasowa algorytmu to O(n2).

Jeśli zbiór Q będziemy przechowywać w postaci kopca, wyszukiwanie elementu będzie się odbywało w czasie O(logn). Jednak po każdej zmianie kosztu dotarcia do wierzchołka trzeba przebudować kopiec, co również odbywa się w czasie O(logn). Złożoność obliczeniowa algorytmu wyniesie wówczas O(elogn). Dla grafów rzadkich (liczba krawędzi mniejsza pod względem rzędu wielkości od n2/logn) jest to zatem rozwiązanie szybsze, ale dla grafów gęstych – wolniejsze.

Jeśli do przechowywania zbioru Q zastosujemy kopiec Fibonacciego, złożoność obliczeniowa algorytmu zmniejszy się do O(nlogn+e).

Bibliografia

  • T.H. Cormen, Ch.E. Leiserson, R.L. Rivest, C. Stein, Wprowadzenie do algorytmów, Wydawnictwo Naukowe PWN, Warszawa, 2012, ISBN 9788301169114.
Ocena: +9 Tak Nie
Liczba głosów: 15.

Dodano: 17 marca 2017 15:07, ostatnia edycja: 26 stycznia 2019 17:49.

REKLAMA

Zobacz też

Sortowanie bąbelkowe (ang. bubble sort) – prosty algorytm sortowania polegający na porównywaniu za sobą sąsiednich elementów. Złożoności czasowa algorytmu wynosi O(n2).
→ Czytaj całość

Drzewo decyzyjne – metoda graficzna wspierająca podejmowanie decyzji, jak również model stosowany w uczeniu maszynowym do klasyfikacji lub regresji.

Podejmowanie decyzji z wykorzystaniem drzewa decyzyjnego odbywa się poprzez odpowiadanie na kolejne pytania. Pojedyncze pytanie musi być proste i dotyczyć jednego konkretnego atrybutu. Pytania ułożone są w strukturę hierarchiczną – wybór następnego pytania (lub końcowej decyzji) zależy od odpowiedzi udzielonej na poprzednie.

Proste drzewo decyzyjne może być w pełni zaprojektowane już przy tworzeniu programu i zaimplementowane w kodzie np. za pomocą instrukcji warunkowych. W uczeniu maszynowym drzewo jest generowane automatycznie na podstawie próbek ze zbioru uczącego.

→ Czytaj całość

Ten artykuł opisuje algorytm zachłanny rozwiązujący problem wydawania reszty. Algorytm ten polega na wybieraniu zawsze największej dostępnej monety, tzn. takiej, która nie jest większa od kwoty pozostałej do wydania.

Algorytm nie zawsze znajduje rozwiązanie optymalne. Przykładowo, dla zbioru nominałów {1, 3, 4} i kwoty 6 algorytm użyje najpierw monety o nominale 4 (pozostaje do wydania kwota 2), potem monety o nominale 1 (pozostaje kwota 1) i jeszcze raz monety o nominale 1. Łącznie algorytm użyje więc trzech monet, podczas gdy rozwiązanie optymalne wymaga użycia tylko dwóch (dwie monety o nominale 3).

→ Czytaj całość
Polityka prywatnościKontakt