Algorytm Dijkstry

Tutorial
Na ten temat mamy również tutorial „Algorytm Dijkstry”, który ilustruje działanie algorytmu krok po kroku. Zapraszamy do zapoznania się z nim!
Algorytm Dijkstry animacja (1) Wykonanie algorytmu na przykładzie
REKLAMA Algorytmy. Ilustrowany przewodnik
54,90 zł
Róża, a co chcesz wiedzieć? Komiks edukacyjny o technologiach dla dzieci
29,90 zł
Deep Learning. Praca z językiem Python i biblioteką Keras
−30%41,30 zł
Zwinne wytwarzanie oprogramowania. Najlepsze zasady, wzorce i praktyki
99,00 zł

Algorytm Dijkstry – algorytm służący do wyznaczania najkrótszych ścieżek w grafie. Wyznacza najkrótsze ścieżki z jednego wierzchołka (zwanego wierzchołkiem źródłowym) do pozostałych wierzchołków. Algorytm wymaga, aby wagi krawędzi grafu nie były ujemne. Autorem algorytmu jest holenderski naukowiec Edsger Dijkstra.

Algorytm realizuje podejście zachłanne. W każdej iteracji wybierany jest ten spośród nieodwiedzonych wierzchołków, do którego można dotrzeć najmniejszym kosztem. Po wyznaczeniu ścieżki do konkretnego wierzchołka nie zostanie ona zmodyfikowana w trakcie wykonywania dalszej części algorytmu.

Opis działania algorytmu

W trakcie wykonywania algorytmu dla każdego wierzchołka zostają wyznaczone dwie wartości: koszt dotarcia do tego wierzchołka oraz poprzedni wierzchołek na ścieżce. Na początku działania algorytmu dla wierzchołka źródłowego koszt dotarcia wynosi 0 (już tam jesteśmy), a dla każdego innego wierzchołka nieskończoność (w ogóle nie wiemy, jak się tam dostać). Wszystkie wierzchołki na początku znajdują się w zbiorze Q (są to wierzchołki nieprzejrzane). Następnie algorytm przebiega następująco:

  • Dopóki zbiór Q nie jest pusty:
    • Pobierz ze zbioru Q wierzchołek o najmniejszym koszcie dotarcia. Oznacz go jako v i usuń ze zbioru Q.
    • Dla każdej krawędzi wychodzącej z wierzchołka v (oznaczmy ją jako k) wykonaj następujące czynności:
      • Oznacz wierzchołek znajdujący się na drugim końcu krawędzi k jako u.
      • Jeśli koszt dotarcia do wierzchołka u z wierzchołka v poprzez krawędź k jest mniejszy od aktualnego kosztu dotarcia do wierzchołka u, to:
        • Przypisz kosztowi dotarcia do wierzchołka u koszt dotarcia do wierzchołka v powiększony o wagę krawędzi k.
        • Ustaw wierzchołek v jako poprzednik wierzchołka u.

Złożoność czasowa

Oznaczmy liczbę wierzchołków przez n, a liczbę krawędzi przez e. Każda krawędź będzie analizowana jeden raz w przypadku grafu skierowanego lub dwa razy w przypadku grafu nieskierowanego. Oprócz analizy krawędzi w trakcie wykonywania algorytmu n razy przeszukuje się zbiór Q. W przypadku przechowywania zbioru Q w zwykłej tablicy wyszukanie wierzchołka odbywa się w czasie liniowym (O(n)). Wówczas złożoność czasowa algorytmu to O(n2+e). Biorąc pod uwagę, że w przypadku braku krawędzi wielokrotnych liczba krawędzi jest zawsze mniejsza od n2, można powiedzieć, że złożoność czasowa algorytmu to O(n2).

Jeśli zbiór Q będziemy przechowywać w postaci kopca, wyszukiwanie elementu będzie się odbywało w czasie O(logn). Jednak po każdej zmianie kosztu dotarcia do wierzchołka trzeba przebudować kopiec, co również odbywa się w czasie O(logn). Złożoność obliczeniowa algorytmu wyniesie wówczas O(elogn). Dla grafów rzadkich (liczba krawędzi mniejsza pod względem rzędu wielkości od n2/logn) jest to zatem rozwiązanie szybsze, ale dla grafów gęstych – wolniejsze.

Jeśli do przechowywania zbioru Q zastosujemy kopiec Fibonacciego, złożoność obliczeniowa algorytmu zmniejszy się do O(nlogn+e).

Bibliografia

  • T.H. Cormen, Ch.E. Leiserson, R.L. Rivest, C. Stein, Wprowadzenie do algorytmów, Wydawnictwo Naukowe PWN, Warszawa, 2012, ISBN 9788301169114.
Ocena: +5 Tak Nie
Liczba głosów: 5.

Dodano: 17 marca 2017 15:07, ostatnia edycja: 26 stycznia 2019 17:49.

REKLAMA

Zobacz też

Algorytm Helda-Karpa (czasami określany jako algorytm Bellmana-Helda-Karpa) – algorytm służący do rozwiązywania problemu komiwojażera. Jest to algorytm dokładny oparty na programowaniu dynamicznym. Algorytm ma złożoność czasową O(n22n) i złożoność pamięciową O(n2n). Jest to co prawda złożoność gorsza od wielomianowej, ale algorytm ten jest znacznie lepszy od algorytmu sprawdzającego wszystkie warianty (złożoność czasowa O(n!)).

→ Czytaj całość

Algorytm genetycznymetaheurystyka inspirowana biologiczną ewolucją.

Pojęcie algorytmu genetycznego nie jest powiązane z żadnym konkretnym problemem obliczeniowym, algorytm ten może być wykorzystywany do rozwiązywania różnych problemów. Algorytm genetyczny nie próbuje rozwiązywać problemu w sposób analityczny, ale próbuje uzyskać jak najlepsze rozwiązania poprzez wybieranie jak najlepszych cech rozwiązań z określonej puli. Implementując algorytm genetyczny należy przedstawić potencjalne rozwiązanie problemu w postaci jakiejś struktury danych, a następnie zdefiniować operacje krzyżowania, mutacji i selekcji. Zakładamy, że z każdym kolejnym pokoleniem rozwiązania występujące w populacji będą coraz lepsze.

→ Czytaj całość

Kolejka (ang. Queue) – struktura danych, w której elementy pobierane są z początku, a dodawane na końcu. Z kolejki można zatem pobrać tylko ten element, który był dodany najwcześniej. Kolejka bywa określana również jako kolejka FIFO (z ang. First In, First Out), w odróżnieniu od kolejki LIFO, czyli stosu.

→ Czytaj całość
Polityka prywatnościKontakt