Algorytmy, struktury danych i techniki programowania. Wydanie V
49,00 zł
Zrozum struktury danych. Algorytmy i praca na danych w Javie
−30%27,93 zł
Opus magnum C++11. Programowanie w języku C++ (komplet)
149,00 zł
Kwalifikacja EE.08. Montaż i eksploatacja systemów komputerowych, urządzeń peryferyjnych i sieci. Część 2. Systemy operacyjne. Podręcznik do nauki zawodu technik informatyk
37,95 zł
Kwalifikacja E.12. Montaż i eksploatacja komputerów osobistych oraz urządzeń peryferyjnych. Podręcznik do nauki zawodu technik informatyk
57,00 zł
Kwalifikacja E.14. Część 3. Tworzenie aplikacji internetowych. Podręcznik do nauki zawodu technik informatyk
37,95 zł

Algorytm Dijkstry

Tutorial
Na ten temat mamy również tutorial „Algorytm Dijkstry”, który ilustruje działanie algorytmu krok po kroku. Zapraszamy do zapoznania się z nim!
Algorytm Dijkstry animacja Wykonanie algorytmu na przykładzie

Algorytm Dijkstry – algorytm służący do wyznaczania najkrótszych ścieżek w grafie. Wyznacza najkrótsze ścieżki z jednego wierzchołka (zwanego wierzchołkiem źródłowym) do pozostałych wierzchołków. Algorytm wymaga, aby wagi krawędzi grafu nie były ujemne. Autorem algorytmu jest holenderski naukowiec Edsger Dijkstra.

Algorytm realizuje podejście zachłanne. W każdej iteracji wybierany jest ten spośród nieodwiedzonych wierzchołków, do którego można dotrzeć najmniejszym kosztem. Po wyznaczeniu ścieżki do konkretnego wierzchołka nie zostanie ona zmodyfikowana w trakcie wykonywania dalszej części algorytmu.

Opis działania algorytmu

W trakcie wykonywania algorytmu dla każdego wierzchołka zostają wyznaczone dwie wartości: koszt dotarcia do tego wierzchołka oraz poprzedni wierzchołek na ścieżce. Na początku działania algorytmu dla wierzchołka źródłowego koszt dotarcia wynosi 0 (już tam jesteśmy), a dla każdego innego wierzchołka nieskończoność (w ogóle nie wiemy, jak się tam dostać). Wszystkie wierzchołki na początku znajdują się w zbiorze Q (są to wierzchołki nieprzejrzane). Następnie algorytm przebiega następująco:

  • Dopóki zbiór Q nie jest pusty:
    • Pobierz ze zbioru Q wierzchołek o najmniejszym koszcie dotarcia. Oznacz go jako v i usuń ze zbioru Q.
    • Dla każdej krawędzi wychodzącej z wierzchołka v (oznaczmy ją jako k) wykonaj następujące czynności:
      • Oznacz wierzchołek znajdujący się na drugim końcu krawędzi k jako u.
      • Jeśli koszt dotarcia do wierzchołka u z wierzchołka v poprzez krawędź k jest mniejszy od aktualnego kosztu dotarcia do wierzchołka u, to:
        • Przypisz kosztowi dotarcia do wierzchołka u koszt dotarcia do wierzchołka v powiększony o wagę krawędzi k.
        • Ustaw wierzchołek v jako poprzednik wierzchołka u.

Złożoność czasowa

Oznaczmy liczbę wierzchołków przez n, a liczbę krawędzi przez e. Każda krawędź będzie analizowana jeden raz w przypadku grafu skierowanego lub dwa razy w przypadku grafu nieskierowanego. Oprócz analizy krawędzi w trakcie wykonywania algorytmu n razy przeszukuje się zbiór Q. W przypadku przechowywania zbioru Q w zwykłej tablicy wyszukanie wierzchołka odbywa się w czasie liniowym (O(n)). Wówczas złożoność czasowa algorytmu to O(n2+e). Biorąc pod uwagę, że w przypadku braku krawędzi wielokrotnych liczba krawędzi jest zawsze mniejsza od n2, można powiedzieć, że złożoność czasowa algorytmu to O(n2).

Jeśli zbiór Q będziemy przechowywać w postaci kopca, wyszukiwanie elementu będzie się odbywało w czasie O(logn). Jednak po każdej zmianie kosztu dotarcia do wierzchołka trzeba przebudować kopiec, co również odbywa się w czasie O(logn). Złożoność obliczeniowa algorytmu wyniesie wówczas O(elogn). Dla grafów rzadkich (liczba krawędzi mniejsza pod względem rzędu wielkości od n2/logn) jest to zatem rozwiązanie szybsze, ale dla grafów gęstych – wolniejsze.

Jeśli do przechowywania zbioru Q zastosujemy kopiec Fibonacciego, złożoność obliczeniowa algorytmu zmniejszy się do O(nlogn+e).

Bibliografia

  1. T.H. Cormen, Ch.E. Leiserson, R.L. Rivest, C. Stein, Wprowadzenie do algorytmów, Wydawnictwo Naukowe PWN, Warszawa, 2012.
Ocena: +3 Tak Nie
Liczba głosów: 3.

Dodano: 17 marca 2017 15:07, ostatnia edycja: 8 lipca 2017 15:02.

Zobacz też

K-opt, algorytm k-optymalny – algorytm lokalnej optymalizacji wykorzystywany przy rozwiązywaniu problemu komiwojażera. Algorytm ten nie służy do samego wyznaczania trasy, a jedynie do ulepszania jej. Najprostszą wersją tego algorytmu jest algorytm 2-optymalny.

→ Czytaj całość

Ten artykuł opisuje algorytm rozwiązujący problem wydawania reszty oparty na programowaniu dynamicznym. Algorytm ten daje gwarancję znalezienia rozwiązania optymalnego.

Istnieje również pewna modyfikacja tego algorytmu, która została opisana w osobnym artykule.

→ Czytaj całość

Graf – struktura składająca się ze zbioru wierzchołków oraz zbioru krawędzi. Grafy mają szerokie zastosowanie w informatyce, można za ich pomocą przedstawić wiele zagadnień.

Wyróżniamy grafy nieskierowane oraz grafy skierowane. W grafie nieskierowanym relacja sąsiedztwa jest symetryczna, tzn. krawędź łączy wierzchołki „w obie strony”. W grafie skierowanym krawędzie są „jednokierunkowe”. Krawędź grafu skierowanego zazwyczaj jest określana jako łuk.

Graf ważony (inaczej graf z wagami) to taki graf, w którym każdej krawędzi przypisana jest pewna wartość liczbowa. Wartość ta może oznaczać np. długość krawędzi lub jej przepustowość.

→ Czytaj całość
Polityka prywatnościKontakt