Metoda z zastosowaniem przepływu blokującego – algorytm wyznaczający maksymalny przepływ w sieci przepływowej. W algorytmie tym przepływ zwiększany jest iteracyjnie, w każdej iteracji wyznaczony przepływ jest powiększany o przepływ blokujący w warstwowej sieci residualnej.
Warstwowa sieć residualna to taka sieć residualna, w której każda ścieżka ze źródła do dowolnego innego wierzchołka jest ścieżką najkrótszą (pod względem liczby krawędzi). Można ją wyznaczyć na podstawie zwykłej sieci residualnej poprzez usunięcie z niej:
Pojęcie sieci residualnej zostało objaśnione w artykule na temat metody Forda-Fulkersona.
Przepływ blokujący w warstwowej sieci residualnej to taki przepływ, którego nie da się powiększyć poprzez zwiększanie przepływu w łukach (na każdej ścieżce ze źródła do ujścia jest co najmniej jeden łuk nasycony, czyli taki, dla którego nie da się już zwiększyć przepływu). Należy pamiętać, że mówimy tutaj o łukach warstwowej sieci residualnej, a nie o sieci przepływowej! Przepływ blokujący w warstwowej sieci residualnej nie musi być więc maksymalnym przepływem w sieci przepływowej.
Dodano: 29 grudnia 2017 13:58, ostatnia edycja: 30 stycznia 2019 15:59.
Algorytm genetyczny – jedna z metaheurystyk inspirowanych biologiczną ewolucją.
Pojęcie algorytmu genetycznego nie jest powiązane z żadnym konkretnym problemem obliczeniowym, algorytm ten może być wykorzystywany do rozwiązywania różnych problemów. Algorytm genetyczny nie próbuje rozwiązywać problemu w sposób analityczny, ale próbuje uzyskać jak najlepsze rozwiązania poprzez wybieranie jak najlepszych cech rozwiązań z określonej puli. Implementując algorytm genetyczny należy przedstawić potencjalne rozwiązanie problemu w postaci jakiejś struktury danych, a następnie zdefiniować operacje krzyżowania, mutacji i selekcji. Zakładamy, że z każdym kolejnym pokoleniem rozwiązania występujące w populacji będą coraz lepsze.
Rekurencja (inaczej rekursja) – odwołanie się funkcji lub definicji do samej siebie. Mówiąc inaczej, podejście rekurencyjne polega na tym, że rozwiązanie problemu wyraża się za pomocą rozwiązania tego samego problemu dla mniejszych danych wejściowych. Stosowanie rekurencji jest charakterystyczne dla algorytmów projektowanych metodą dziel i zwyciężaj.
Typowym problemem, dla którego można zastosować rekurencję, jest obliczanie silni. Przypomnijmy, że silnia z n jest zdefiniowana jako n!=1×2×…×n. Funkcja ta może być równoważnie zapisana jako:
n!=(n−1)!×n, dla n>0,
n!=1, dla n=0.
W powyższym przykładzie górny wiersz jest ogólnym równaniem rekurencji, zaś dolny wiersz jest wartością brzegową. W języku C++ powyższa funkcja byłaby zapisana w poniższy sposób.
int silnia(int n) { if (n > 0) { return n * silnia(n-1); } else { return 1; } };
Przekształcenie postaci rekurencyjnej funkcji do postaci zwartej (tzn. takiej, która nie zawiera odwołania do samej siebie) jest określane jako rozwiązanie rekurencji. Metody rozwiązywania rekurencji są dostępne między innymi w książkach podanych w bibliografii.
Algorytmy stosujące rekurencję są zazwyczaj proste w implementacji. Jednocześnie wiążą się one z pewnymi problemami. Przy podejściu rekurencyjnym ta sama funkcja jest wywoływana wielokrotnie, co zużywa pamięć operacyjną (w skrajnych przypadkach może to spowodować przepełnienie stosu).
Ten artykuł opisuje algorytm rozwiązujący problem wydawania reszty oparty na programowaniu dynamicznym. Algorytm ten daje gwarancję znalezienia rozwiązania optymalnego.
Istnieje również pewna modyfikacja tego algorytmu, która została opisana w osobnym artykule.