Algorytmy
49,00 zł
Zrozum struktury danych. Algorytmy i praca na danych w Javie
−30%27,93 zł
Wprowadzenie do obliczeń równoległych
−16%49,45 zł
Informatyka Europejczyka. Podręcznik dla szkoły podstawowej. Klasa 8
9,90 zł
Kwalifikacja E.13. Projektowanie lokalnych sieci komputerowych i administrowanie sieciami
57,00 zł
Informatyka Europejczyka. Podręcznik dla szkół ponadgimnazjalnych. Zakres rozszerzony. Część 1 (Wydanie III)
32,90 zł

Quicksort

Tutorial
Na ten temat mamy również tutorial „Quicksort”, który ilustruje działanie algorytmu krok po kroku. Zapraszamy do zapoznania się z nim!
Quicksort Przykładowe wykonanie algorytmu quicksort
Quicksort przerzucanie Przykładowe wykonanie operacji przerzucania elementów wokół klucza osiowego

Quicksort, sortowanie szybkie – algorytm sortowania działający w średnim przypadku w czasie liniowo-logarytmicznym. Algorytm jest oparty na metodzie dziel i zwyciężaj. Nie jest to algorytm stabilny ani wykazujący zachowanie naturalne, jednak ze względu na efektywność jest algorytmem bardzo popularnym.

Przebieg algorytmu

Quicksort jest algorytmem rekurencyjnym, jego działanie można opisać następująco:

  • Wybierz jeden z elementów jako klucz osiowy,
  • Przenieś wszystkie elementy mniejsze od klucza osiowego na jedną stronę tablicy, a pozostałe na drugą,
  • Wywołaj procedurę rekurencyjnie dla części tablicy na lewo od klucza osiowego i na prawo od klucza osiowego.

Wybór klucza osiowego może być dowolny, jednak powinien być jak najszybszy. W praktyce często stosuje się po prostu wybór pierwszego elementu.

Operacja przerzucania elementów powinna musi być zaimplementowana tak, aby wykonywała się w czasie liniowym. Przykładowo, może ona być zdefiniowana w następujący sposób:

  • Przyjmujemy pierwszy element za klucz osiowy.
  • Dla każdego kolejnego elementu:
    • Jeśli jest większy od klucza osiowego, zostawiamy go na miejscu.
    • W przeciwnym razie zamieniamy go miejscami z pierwszym elementem większym od klucza osiowego (wyjątek: jeśli nie znaleźliśmy wcześniej żadnego elementu większego od klucza osiowego, nie robimy nic).
  • Zamieniamy miejscami klucz osiowy z ostatnim elementem mniejszym od niego.

Analiza algorytmu

Jak już wspomniano, operacja przenoszenia elementów odbywa się w czasie liniowym. O złożoności algorytmu decyduje więc to, ile nastąpi rekurencyjnych wywołań funkcji. W przypadku optymistycznym tablica będzie dzielona na pół. Wówczas głębokość drzewa wywołań zależy logarytmicznie od liczby danych wejściowych, czyli optymistyczna złożoność czasowa algorytmu jest rzędu O(n logn). Możemy wykazać, że taki sam rząd złożoności wystąpi w przypadku średnim (dowód jest dostępny w książkach podanych w bibliografii).

Przypadek pesymistyczny występuje wtedy, gdy klucz osiowy za każdym razem znajdzie się na brzegu tabeli. Wówczas przy każdym kolejnym wywołaniu liczba elementów do posortowania jest tylko o 1 mniejsza, zatem funkcja zostanie wywołana n razy. Pesymistyczna złożoność czasowa wynosi zatem O(n2).

Przeanalizujmy złożoność pamięciową algorytmu. Sortowanie szybkie nie potrzebuje co prawda dodatkowej pamięci na przechowywanie sortowanych danych, wymaga jednak pamięci potrzebnej na obsługę rekurencyjnych wywołań funkcji. Rozmiar tej pamięci (podobnie jak czas wykonania) będzie zależał od głębokości drzewa wywołań. Złożoność pamięciowa wynosi więc O(logn) w przypadku średnim i O(n) w przypadku pesymistycznym. Nie jest to zatem algorytm sortujący w miejscu.

Zastanówmy się, kiedy może wystąpić przypadek pesymistyczny. Jeśli jako klucz osiowy obieramy pierwszy (lub ostatni) elementu z tablicy, to najgorszy przypadek wystąpi wtedy, gdy tablica jest już posortowana. Widzimy więc, że algorytm nie zachowuje się w sposób bardzo nienaturalny.

Możliwe usprawnienia

Niedoskonałości algorytmu można nieco poprawić stosując następujące techniki:

  • Jako klucz osiowy zamiast pierwszego elementu można obierać element losowy. Nie zmieni to złożoności algorytmu, jednak sprawi, że przypadek pesymistyczny nie będzie występował w przypadku tablicy posortowanej.
  • Przy wyborze klucza osiowego można zastosować nieco bardziej złożone techniki. Jednym z rozwiązań jest wybór mediany z kilku wybranych elementów (np. pierwszego, ostatniego i środkowego). Należy jednak uważać, żeby nie spowolniło to zbytnio całej procedury – siła omawianego algorytmu tkwi w tym, aby wybór klucza osiowego i przestawianie elementów było jak najszybsze.
  • W celu zmniejszenia liczby rekurencyjnych wywołań funkcji, dla małych tablic można zastosować jakiś prosty, nierekurencyjny algorytm sortowania, np. sortowanie przez wstawianie (wówczas mamy do czynienia z algorytmem hybrydowym).
  • Jeśli wartość klucza osiowego powtarza się w tablicy, można od razu ustawić te elementy obok klucza osiowego i nie włączać tego fragmentu tablicy do wywołań rekurencyjnych. Taka modyfikacja jest określana jako Quick Sort 3 Way Partition.

Kod źródłowy

Przykładowa implementacja algorytmu w języku C wygląda następująco:

void quicksort(int* tab, int poczatek, int n)
{
    if (n > 1) 
    {
        int liczba_mniejszych = 0;
        int liczba_wiekszych = 0;
        
        int koniec = poczatek + n;
        int t; // Zmienna tymczasowa
    
        // Przeniesienie elementow wokol klucza osiowego
        for (int i = (poczatek + 1); i < koniec; ++i)
        {
            
            if (tab[i] < tab[poczatek])
            {   
                if (liczba_wiekszych > 0)
                {
                    // Przeniesienie elementu mniejszego od klucza osiowego
                    // przed elementy wieksze od klucza osiowego
                    t = tab[poczatek+liczba_mniejszych+1];
                    tab[poczatek+liczba_mniejszych+1] = tab[i];
                    tab[i] = t;
                }                    
                ++liczba_mniejszych; 
            }
            else
            {
                ++liczba_wiekszych;
            }
            
        }
        
        // Wstawienie klucza osiowego na wlasciwe miejsce
        t = tab[poczatek+liczba_mniejszych];
        tab[poczatek+liczba_mniejszych] = tab[poczatek];
        tab[poczatek] = t;
        
        // Wywołanie rekurencyjne
        quicksort(tab, poczatek, liczba_mniejszych);
        quicksort(tab, koniec-liczba_wiekszych, liczba_wiekszych);
        
    }
}

// Przykladowe uzycie funkcji
int main()
{
    int tab[] = {3, 7, 5, 1, 5, 8, 4, 2};
    quicksort(tab, 0, 8);
    
    return 0; 
}

Bibliografia

  1. T.H. Cormen, Ch.E. Leiserson, R.L. Rivest, C. Stein, Wprowadzenie do algorytmów, Wydawnictwo Naukowe PWN, Warszawa, 2012.
  2. Z.J. Czech, S. Deorowicz, P. Fabian, Algorytmy i struktury danych. Wybrane zagadnienia, Wydawnictwo Politechniki Śląskiej, Gliwice, 2010.
  3. Quick Sort (3 Way Partition) - Sorting Algorithm Animations | Toptal [dostęp: 5 stycznia 2018]
Ocena: 0 Tak Nie
Liczba głosów: 0.

Dodano: 5 stycznia 2018 18:56, ostatnia edycja: 11 stycznia 2018 19:53.

Zobacz też

Powtarzalny algorytm najbliższego sąsiada (ang. repetitive nearest neighbour algorithm, w skrócie RNN) – algorytm służący do rozwiązywania problemu komiwojażera korzystający z algorytmu najbliższego sąsiada.

Algorytm polega na wielokrotnym wykonaniu algorytmu najbliższego sąsiada w taki sposób, aby każdy wierzchołek raz był wierzchołkiem początkowym. Następnie algorytm zwraca najlepsze spośród otrzymanych rozwiązań.

Dla grafu pełnego algorytm ma złożoność O(n3), gdzie n jest liczbą wierzchołków. W trakcie wykonywania algorytmu RNN n razy zostanie wykonany algorytm najbliższego sąsiada, który ma złożoność czasową O(n2).

Algorytm RNN nie daje gwarancji znalezienia rozwiązania optymalnego. W odróżnieniu od algorytmu najbliższego sąsiada daje jednak gwarancję, że zwróci rozwiązanie co najmniej tak dobre, jak n/2-1 innych rozwiązań (dowód i więcej informacji na ten temat znajduje się w pracy podanej w bibliografii).

→ Czytaj całość
Algorytm najbliższego sąsiada (ang. nearest neighbour algorithm, w skrócie NN) – algorytm służący do rozwiązywania problemu komiwojażera. Jest to algorytm wykorzystujący strategię zachłanną.
→ Czytaj całość

Ten artykuł opisuje pewną modyfikację algorytmu opartego na programowaniu dynamicznym rozwiązującego problem wydawania reszty. Algorytm ten daje gwarancję znalezienia rozwiązania optymalnego. Algorytm zaproponował J.W. Wright w pracy The Change-Making Problem (link w bibliografii).

→ Czytaj całość
Polityka prywatnościKontakt