Algorytm Kruskala

Minimalne drzewo rozpinające, tworzenie (1) Przykładowe wykonania algorytmu Kruskala
Matroid MST (2) Reprezentacja problemu minimalnego drzewa rozpinającego za pomocą matroidu (kliknij ilustrację, aby powiększyć)

Algorytm Kruskala – algorytm wyznaczający minimalne drzewo rozpinające. Algorytm ten wykorzystuje strategię zachłanną, zawsze zwraca rozwiązanie optymalne.

Działanie algorytmu

Algorytm polega na dołączaniu do rozwiązania kolejno najkrótszych możliwych krawędzi, aż do otrzymania drzewa rozpinającego. Algorytm ten można bardziej formalnie zapisać następująco:

  1. Posortuj krawędzie rosnąco według ich wag, umieść je w kolejce.
  2. Pobierz z kolejki krawędź o najmniejszej wadze, usuń ją z kolejki.
  3. Jeśli wierzchołki łączone przez tę krawędź należą do różnych drzew (wówczas dołączenie krawędzi nie spowoduje utworzenia cyklu), dołącz krawędź do rozwiązania.
  4. Jeśli liczba krawędzi dołączonych do rozwiązania wynosi v-1 (v jest liczbą wierzchołków), zakończ działanie algorytmu. W przeciwnym razie przejdź do punktu 2.

Główna pętla algorytmu wykona się maksymalnie e razy (e jest liczbą krawędzi). W trakcie każdego przebiegu pętli trzeba jednak sprawdzić, czy daną krawędź można dołączyć do rozwiązania. Złożoność obliczeniowa algorytmu zależy od sposobu implementacji sprawdzania tego warunku, a także od sposobu sortowania kolejki krawędzi.

Aby sprawdzać, czy wierzchołki należą do różnych drzew, możemy wykorzystać zbiory wierzchołków. Na początku każdy wierzchołek będzie w osobnym zbiorze. Za każdym razem przed dołączeniem krawędzi sprawdzamy, czy wierzchołki znajdują się w różnych zbiorach. Jeśli tak, krawędź dołączamy do rozwiązania, a te dwa zbiory scalamy.

Zwracanie rozwiązań optymalnych

Algorytm Kruskala (pomimo, że jako algorytm zachłanny zalicza się do heurystyk) zawsze zwraca rozwiązanie optymalne. Problem wyznaczania minimalnego drzewa rozpinającego można przedstawić za pomocą matroidu – przykład jest pokazany na rysunku (2). Udowodniono, że w takim przypadku podejście zachłanne daje gwarancję znalezienia rozwiązania optymalnego. Pełen dowód jest dostępny w książce [1].

Bibliografia

  • T.H. Cormen, Ch.E. Leiserson, R.L. Rivest, C. Stein, Wprowadzenie do algorytmów, Wydawnictwo Naukowe PWN, Warszawa, 2012, ISBN 9788301169114.
Ocena: 0 Tak Nie
Liczba głosów: 0.

Dodano: 5 kwietnia 2017 12:16, ostatnia edycja: 24 kwietnia 2020 19:28.

REKLAMA

Zobacz też

Programowanie dynamiczne – technika projektowania algorytmów polegająca na rozwiązywaniu podproblemów i zapamiętywaniu ich wyników. W technice tej, podobnie jak w metodzie dziel i zwyciężaj, problem dzielony jest na mniejsze podproblemy. Wyniki rozwiązywania podproblemów są jednak zapisywane w tabeli, dzięki czemu w przypadku natrafienia na ten sam podproblem nie trzeba go ponownie rozwiązywać.

Wykorzystując programowanie dynamiczne można zastosować metodę zstępującą z zapamiętywaniem lub metodę wstępującą.

  • Metoda zstępująca z zapamiętywaniem polega na rekurencyjnym wywoływaniu funkcji z zapamiętywaniem wyników. Metoda ta jest podobna do metody dziel i zwyciężaj – różni się od niej tym, że jeśli rozwiązanie danego problemu jest już w tabeli z wynikami, to należy je po prostu stamtąd odczytać.
  • Metoda wstępująca polega na rozwiązywaniu wszystkich możliwych podproblemów, zaczynając od tych o najmniejszym rozmiarze. Wówczas w momencie rozwiązywania podproblemu na pewno są już dostępne rozwiązania jego podproblemów. W tym podejściu nie zużywa się pamięci na rekurencyjne wywołania funkcji. Może się jednak okazać, że część podproblemów została rozwiązana nadmiarowo (nie były one potrzebne do rozwiązania głównego problemu).
→ Czytaj całość

Algorytm Kruskala – algorytm wyznaczający minimalne drzewo rozpinające. Algorytm ten wykorzystuje strategię zachłanną, zawsze zwraca rozwiązanie optymalne.

→ Czytaj całość

Dziel i zwyciężaj (ang. divide and conquer) – technika projektowania algorytmów polegająca na podejściu rekurencyjnym. W technice tej problem dzielony jest na mniejsze podproblemy, te podproblemy na jeszcze mniejsze podproblemy, aż dojdzie się do przypadków trywialnych (np. posortowanie jednoelementowej tablicy, obliczenie silni z 1).

Jeśli rozpatrywany problem wymaga podzielenia na podproblemy, jest on określany jako przypadek rekurencyjny. Jeśli mamy do czynienia z przypadkiem trywialnym, jest to przypadek bazowy. Tworząc algorytm wykorzystujący metodę dziel i zwyciężaj musimy ustalić:

  • Jak rozwiązać przypadek bazowy (trywialny).
  • Jak wyznaczyć rozwiązanie problemu, mając dostępne rozwiązania podproblemów.

Przykładem algorytmu opartego na tej metodzie jest sortowanie przez scalanie.

→ Czytaj całość
Polityka prywatnościKontakt