Algorytm Kruskala

Minimalne drzewo rozpinające, tworzenie (1) Przykładowe wykonania algorytmu Kruskala
Matroid MST (2) Reprezentacja problemu minimalnego drzewa rozpinającego za pomocą matroidu (kliknij ilustrację, aby powiększyć)

Algorytm Kruskala – algorytm wyznaczający minimalne drzewo rozpinające. Algorytm ten wykorzystuje strategię zachłanną, zawsze zwraca rozwiązanie optymalne.

Działanie algorytmu

Algorytm polega na dołączaniu do rozwiązania kolejno najkrótszych możliwych krawędzi, aż do otrzymania drzewa rozpinającego. Algorytm ten można bardziej formalnie zapisać następująco:

  1. Posortuj krawędzie rosnąco według ich wag, umieść je w kolejce.
  2. Pobierz z kolejki krawędź o najmniejszej wadze, usuń ją z kolejki.
  3. Jeśli wierzchołki łączone przez tę krawędź należą do różnych drzew (wówczas dołączenie krawędzi nie spowoduje utworzenia cyklu), dołącz krawędź do rozwiązania.
  4. Jeśli liczba krawędzi dołączonych do rozwiązania wynosi v-1 (v jest liczbą wierzchołków), zakończ działanie algorytmu. W przeciwnym razie przejdź do punktu 2.

Główna pętla algorytmu wykona się maksymalnie e razy (e jest liczbą krawędzi). W trakcie każdego przebiegu pętli trzeba jednak sprawdzić, czy daną krawędź można dołączyć do rozwiązania. Złożoność obliczeniowa algorytmu zależy od sposobu implementacji sprawdzania tego warunku, a także od sposobu sortowania kolejki krawędzi.

Aby sprawdzać, czy wierzchołki należą do różnych drzew, możemy wykorzystać zbiory wierzchołków. Na początku każdy wierzchołek będzie w osobnym zbiorze. Za każdym razem przed dołączeniem krawędzi sprawdzamy, czy wierzchołki znajdują się w różnych zbiorach. Jeśli tak, krawędź dołączamy do rozwiązania, a te dwa zbiory scalamy.

Zwracanie rozwiązań optymalnych

Algorytm Kruskala (pomimo, że jako algorytm zachłanny zalicza się do heurystyk) zawsze zwraca rozwiązanie optymalne. Problem wyznaczania minimalnego drzewa rozpinającego można przedstawić za pomocą matroidu – przykład jest pokazany na rysunku (2). Udowodniono, że w takim przypadku podejście zachłanne daje gwarancję znalezienia rozwiązania optymalnego. Pełen dowód jest dostępny w książce [1].

Bibliografia

  • T.H. Cormen, Ch.E. Leiserson, R.L. Rivest, C. Stein, Wprowadzenie do algorytmów, Wydawnictwo Naukowe PWN, Warszawa, 2012, ISBN 9788301169114.
Ocena: 0 Tak Nie
Liczba głosów: 0.

Dodano: 5 kwietnia 2017 12:16, ostatnia edycja: 24 kwietnia 2020 19:28.

REKLAMA

Zobacz też

Minimalne drzewo rozpinające (ang. minimum spanning tree, w skrócie MST), inaczej drzewo rozpinające o minimalnej wadze – drzewo łączące wszystkie wierzchołki pewnego grafu spójnego mające najmniejszą możliwą sumę wag krawędzi.

Jeśli graf ma v wierzchołków, to jego drzewo rozpinające zawsze będzie miało v-1 krawędzi. Jeśli ten graf ma e krawędzi, aby utworzyć drzewo rozpinające, trzeba usunąć z grafu e-v+1 krawędzi. Liczba ta jest określana jako liczba cyklomatryczna.

→ Czytaj całość

Dziel i zwyciężaj (ang. divide and conquer) – technika projektowania algorytmów polegająca na podejściu rekurencyjnym. W technice tej problem dzielony jest na mniejsze podproblemy, te podproblemy na jeszcze mniejsze podproblemy, aż dojdzie się do przypadków trywialnych (np. posortowanie jednoelementowej tablicy, obliczenie silni z 1).

Jeśli rozpatrywany problem wymaga podzielenia na podproblemy, jest on określany jako przypadek rekurencyjny. Jeśli mamy do czynienia z przypadkiem trywialnym, jest to przypadek bazowy. Tworząc algorytm wykorzystujący metodę dziel i zwyciężaj musimy ustalić:

  • Jak rozwiązać przypadek bazowy (trywialny).
  • Jak wyznaczyć rozwiązanie problemu, mając dostępne rozwiązania podproblemów.

Przykładem algorytmu opartego na tej metodzie jest sortowanie przez scalanie.

→ Czytaj całość

Algorytm Zhanga-Suena – algorytm służący do szkieletyzacji obrazu binarnego. Szkieletyzacja polega na wyborze z obrazu binarnego tych pikseli, które są równo odległe od krawędzi obiektu.

→ Czytaj całość
Polityka prywatnościKontakt