Algorytm Johnsona

REKLAMA

Etyczny haking. Praktyczne wprowadzenie do hakingu
−40%53,40 zł
Algorytmy uczenia maszynowego. Zaawansowane techniki implementacji
−40%53,40 zł

Algorytm Johnsona – algorytm służący do wyznaczania najkrótszych ścieżek pomiędzy każdą parą wierzchołków w grafie. Algorytm wykorzystuje algorytm Dijkstry i algorytm Bellmana-Forda. Dopuszcza krawędzie o ujemnych wagach, o ile nie tworzą ujemnych cykli.

Złożoność czasowa algorytmu (jeśli algorytm Dijkstry zostanie zaimplementowany z wykorzystaniem kopca Fibonacciego) to O(n2log n + en), gdzie n jest liczbą wierzchołków, a e jest liczbą krawędzi. Dla grafów rzadkich (ze stosunkowo małą liczbą krawędzi) jest to złożoność lepsza, niż złożoność algorytmu Floyda-Warshalla.

Opis działania algorytmu

Na początku wykonujemy algorytm Bellmana-Forda w wersji z dodatkowym wierzchołkiem. W ten sposób weryfikujemy, czy graf nie zawiera ujemnych cykli. Oznaczmy odległości znalezione przez ten algorytm jako hi (i jest wybranym wierzchołkiem grafu).

Następnie trzeba zmodyfikować wagi krawędzi tak, aby pozbyć się wartości ujemnych, a jednocześnie nie zmienić optymalnych tras pomiędzy wierzchołkami. W tym celu możemy skorzystać ze wzoru k'i,j = ki,j + hi − hj, gdzie ki,j jest wagą krawędzi prowadzącej z wierzchołka i do wierzchołka j, a wartości hi i hj są rezultatami wykonania algorytmu Bellmana-Forda.

Teraz nie mamy już krawędzi o ujemnych wagach, możemy zatem wykonać algorytm Dijkstry. Algorytm ten wykonujemy n razy, za każdym razem biorąc inny wierzchołek jako źródłowy. W ten sposób znajdujemy najkrótsze ścieżki pomiędzy każdą parą wierzchołków.

Na końcu musimy odtworzyć oryginalne odległości. W tym celu korzystamy ze wzoru: di,j = d'i,j − hi + hj, gdzie d'i,j jest długością ścieżki z wierzchołka i do wierzchołka j wyznaczoną przez algorytm Dijkstry.

Bibliografia

  • A. Debudaj-Grabysz, S. Deorowicz, J. Widuch, Algorytmy i struktury danych. Wybór zaawansowanych metod, Wydawnictwo Politechniki Śląskiej, Gliwice, 2012, ISBN 9788373359383.
Ocena: +5 Tak Nie
Liczba głosów: 5.

Dodano: 12 sierpnia 2017 13:55, ostatnia edycja: 30 stycznia 2019 15:53.

REKLAMA

Zobacz też

Drzewo decyzyjne – metoda graficzna wspierająca podejmowanie decyzji, jak również model stosowany w uczeniu maszynowym do klasyfikacji lub regresji.

Podejmowanie decyzji z wykorzystaniem drzewa decyzyjnego odbywa się poprzez odpowiadanie na kolejne pytania. Pojedyncze pytanie musi być proste i dotyczyć jednego konkretnego atrybutu. Pytania ułożone są w strukturę hierarchiczną – wybór następnego pytania (lub końcowej decyzji) zależy od odpowiedzi udzielonej na poprzednie.

Proste drzewo decyzyjne może być w pełni zaprojektowane już przy tworzeniu programu i zaimplementowane w kodzie np. za pomocą instrukcji warunkowych. W uczeniu maszynowym drzewo jest generowane automatycznie na podstawie próbek ze zbioru uczącego.

→ Czytaj całość

Algorytm Zhanga-Suena – algorytm służący do szkieletyzacji obrazu binarnego. Szkieletyzacja polega na wyborze z obrazu binarnego tych pikseli, które są równo odległe od krawędzi obiektu.

→ Czytaj całość

K-opt, algorytm k-optymalny – algorytm lokalnej optymalizacji wykorzystywany przy rozwiązywaniu problemu komiwojażera. Algorytm ten nie służy do samego wyznaczania trasy, a jedynie do ulepszania jej. Najprostszą wersją tego algorytmu jest algorytm 2-optymalny.

→ Czytaj całość
Polityka prywatnościKontakt