Algorytm Johnsona – algorytm służący do wyznaczania najkrótszych ścieżek pomiędzy każdą parą wierzchołków w grafie. Algorytm wykorzystuje algorytm Dijkstry i algorytm Bellmana-Forda. Dopuszcza krawędzie o ujemnych wagach, o ile nie tworzą ujemnych cykli.
Złożoność czasowa algorytmu (jeśli algorytm Dijkstry zostanie zaimplementowany z wykorzystaniem kopca Fibonacciego) to O(n2log n + en), gdzie n jest liczbą wierzchołków, a e jest liczbą krawędzi. Dla grafów rzadkich (ze stosunkowo małą liczbą krawędzi) jest to złożoność lepsza, niż złożoność algorytmu Floyda-Warshalla.
Na początku wykonujemy algorytm Bellmana-Forda w wersji z dodatkowym wierzchołkiem. W ten sposób weryfikujemy, czy graf nie zawiera ujemnych cykli. Oznaczmy odległości znalezione przez ten algorytm jako hi (i jest wybranym wierzchołkiem grafu).
Następnie trzeba zmodyfikować wagi krawędzi tak, aby pozbyć się wartości ujemnych, a jednocześnie nie zmienić optymalnych tras pomiędzy wierzchołkami. W tym celu możemy skorzystać ze wzoru k'i,j = ki,j + hi − hj, gdzie ki,j jest wagą krawędzi prowadzącej z wierzchołka i do wierzchołka j, a wartości hi i hj są rezultatami wykonania algorytmu Bellmana-Forda.
Teraz nie mamy już krawędzi o ujemnych wagach, możemy zatem wykonać algorytm Dijkstry. Algorytm ten wykonujemy n razy, za każdym razem biorąc inny wierzchołek jako źródłowy. W ten sposób znajdujemy najkrótsze ścieżki pomiędzy każdą parą wierzchołków.
Na końcu musimy odtworzyć oryginalne odległości. W tym celu korzystamy ze wzoru: di,j = d'i,j − hi + hj, gdzie d'i,j jest długością ścieżki z wierzchołka i do wierzchołka j wyznaczoną przez algorytm Dijkstry.
Dodano: 12 sierpnia 2017 13:55, ostatnia edycja: 30 stycznia 2019 15:53.
Sortowanie przez wstawianie (ang. insertion sort) – prosty algorytm sortowania polegający na wstawianiu kolejnych elementów ciągu we właściwe miejsca. Złożoności czasowa algorytmu wynosi O(n2). Jest to algorytm realizujący metodę przyrostową.
2-opt, algorytm 2-optymalny – algorytm lokalnej optymalizacji wykorzystywany przy rozwiązywaniu problemu komiwojażera. Jest to szczególny przypadek algorytmu k-optymalnego.
Algorytm 2-opt nie służy do wyznaczania trasy, a jedynie do ulepszania jej. Samą trasę można wyznaczyć np. za pomocą algorytmu najbliższego sąsiada. Algorytm może być wykorzystany do ulepszenia algorytmu genetycznego – w ten sposób powstanie algorytm memetyczny.
Algorytm heurystyczny, heurystyka – algorytm niedający (w ogólnym przypadku) gwarancji znalezienia rozwiązania optymalnego, umożliwiający jednak znalezienie rozwiązania dość dobrego w rozsądnym czasie. Algorytmy tego typu używane są w takich problemach obliczeniowych, gdzie znalezienie rozwiązania optymalnego ma zbyt dużą złożoność obliczeniową (w szczególności są to problemy NP-trudne) lub w ogóle nie jest możliwe. Metody heurystyczne zaliczają się do sztucznej inteligencji.
Pojęcie algorytmów heurystycznych jest bardzo szerokie, dotyczy ono różnych technik projektowania algorytmów. Wiele heurystyk wykorzystuje losowość, inne zaś są deterministyczne (wówczas dla takich samych danych wejściowych algorytm zawsze zwróci ten sam wynik).
Ogólny algorytm heurystyczny (opisujący samą ideę poszukiwań) bywa określany w literaturze jako metaheurystyka. Zgodnie z tym nazewnictwem, metaheurystyką jest np. algorytm zachłanny (jako ogólna idea), zaś heurystyką jest np. algorytm najbliższego sąsiada (jako zastosowanie idei algorytmu zachłannego do konkretnego problemu).
Przykładowe techniki konstruowania algorytmów heurystycznych to: