Algorytm Johnsona

REKLAMA Algorytmy
49,00 zł
Spring w akcji. Wydanie V
89,00 zł
Vue.js 2. Wprowadzenie dla profesjonalistów
−30%69,30 zł
Automatyzacja nudnych zadań z Pythonem. Nauka programowania
89,00 zł

Algorytm Johnsona – algorytm służący do wyznaczania najkrótszych ścieżek pomiędzy każdą parą wierzchołków w grafie. Algorytm wykorzystuje algorytm Dijkstry i algorytm Bellmana-Forda. Dopuszcza krawędzie o ujemnych wagach, o ile nie tworzą ujemnych cykli.

Złożoność czasowa algorytmu (jeśli algorytm Dijkstry zostanie zaimplementowany z wykorzystaniem kopca Fibonacciego) to O(n2log n + en), gdzie n jest liczbą wierzchołków, a e jest liczbą krawędzi. Dla grafów rzadkich (ze stosunkowo małą liczbą krawędzi) jest to złożoność lepsza, niż złożoność algorytmu Floyda-Warshalla.

Opis działania algorytmu

Na początku wykonujemy algorytm Bellmana-Forda w wersji z dodatkowym wierzchołkiem. W ten sposób weryfikujemy, czy graf nie zawiera ujemnych cykli. Oznaczmy odległości znalezione przez ten algorytm jako hi (i jest wybranym wierzchołkiem grafu).

Następnie trzeba zmodyfikować wagi krawędzi tak, aby pozbyć się wartości ujemnych, a jednocześnie nie zmienić optymalnych tras pomiędzy wierzchołkami. W tym celu możemy skorzystać ze wzoru k'i,j = ki,j + hi − hj, gdzie ki,j jest wagą krawędzi prowadzącej z wierzchołka i do wierzchołka j, a wartości hi i hj są rezultatami wykonania algorytmu Bellmana-Forda.

Teraz nie mamy już krawędzi o ujemnych wagach, możemy zatem wykonać algorytm Dijkstry. Algorytm ten wykonujemy n razy, za każdym razem biorąc inny wierzchołek jako źródłowy. W ten sposób znajdujemy najkrótsze ścieżki pomiędzy każdą parą wierzchołków.

Na końcu musimy odtworzyć oryginalne odległości. W tym celu korzystamy ze wzoru: di,j = d'i,j − hi + hj, gdzie d'i,j jest długością ścieżki z wierzchołka i do wierzchołka j wyznaczoną przez algorytm Dijkstry.

Bibliografia

  • A. Debudaj-Grabysz, S. Deorowicz, J. Widuch, Algorytmy i struktury danych. Wybór zaawansowanych metod, Wydawnictwo Politechniki Śląskiej, Gliwice, 2012, ISBN 9788373359383.
Ocena: +2 Tak Nie
Liczba głosów: 2.

Dodano: 12 sierpnia 2017 13:55, ostatnia edycja: 30 stycznia 2019 15:53.

REKLAMA

Zobacz też

Algorytm Kruskala – algorytm wyznaczający minimalne drzewo rozpinające. Algorytm ten wykorzystuje strategię zachłanną.

→ Czytaj całość

Quicksort, sortowanie szybkie – algorytm sortowania działający w średnim przypadku w czasie liniowo-logarytmicznym. Algorytm jest oparty na metodzie dziel i zwyciężaj. Nie jest to algorytm stabilny ani wykazujący zachowanie naturalne, jednak ze względu na efektywność jest algorytmem bardzo popularnym.

→ Czytaj całość

Algorytm Dijkstry – algorytm służący do wyznaczania najkrótszych ścieżek w grafie. Wyznacza najkrótsze ścieżki z jednego wierzchołka (zwanego wierzchołkiem źródłowym) do pozostałych wierzchołków. Algorytm wymaga, aby wagi krawędzi grafu nie były ujemne. Autorem algorytmu jest holenderski naukowiec Edsger Dijkstra.

Algorytm realizuje podejście zachłanne. W każdej iteracji wybierany jest ten spośród nieodwiedzonych wierzchołków, do którego można dotrzeć najmniejszym kosztem. Po wyznaczeniu ścieżki do konkretnego wierzchołka nie zostanie ona zmodyfikowana w trakcie wykonywania dalszej części algorytmu.

→ Czytaj całość
Polityka prywatnościKontakt