Algorytm Johnsona

REKLAMA

Array
−40%32,94 zł
Array
−40%35,40 zł

Algorytm Johnsona – algorytm służący do wyznaczania najkrótszych ścieżek pomiędzy każdą parą wierzchołków w grafie. Algorytm wykorzystuje algorytm Dijkstry i algorytm Bellmana-Forda. Dopuszcza krawędzie o ujemnych wagach, o ile nie tworzą ujemnych cykli.

Złożoność czasowa algorytmu (jeśli algorytm Dijkstry zostanie zaimplementowany z wykorzystaniem kopca Fibonacciego) to O(n2log n + en), gdzie n jest liczbą wierzchołków, a e jest liczbą krawędzi. Dla grafów rzadkich (ze stosunkowo małą liczbą krawędzi) jest to złożoność lepsza, niż złożoność algorytmu Floyda-Warshalla.

Opis działania algorytmu

Na początku wykonujemy algorytm Bellmana-Forda w wersji z dodatkowym wierzchołkiem. W ten sposób weryfikujemy, czy graf nie zawiera ujemnych cykli. Oznaczmy odległości znalezione przez ten algorytm jako hi (i jest wybranym wierzchołkiem grafu).

Następnie trzeba zmodyfikować wagi krawędzi tak, aby pozbyć się wartości ujemnych, a jednocześnie nie zmienić optymalnych tras pomiędzy wierzchołkami. W tym celu możemy skorzystać ze wzoru k'i,j = ki,j + hi − hj, gdzie ki,j jest wagą krawędzi prowadzącej z wierzchołka i do wierzchołka j, a wartości hi i hj są rezultatami wykonania algorytmu Bellmana-Forda.

Teraz nie mamy już krawędzi o ujemnych wagach, możemy zatem wykonać algorytm Dijkstry. Algorytm ten wykonujemy n razy, za każdym razem biorąc inny wierzchołek jako źródłowy. W ten sposób znajdujemy najkrótsze ścieżki pomiędzy każdą parą wierzchołków.

Na końcu musimy odtworzyć oryginalne odległości. W tym celu korzystamy ze wzoru: di,j = d'i,j − hi + hj, gdzie d'i,j jest długością ścieżki z wierzchołka i do wierzchołka j wyznaczoną przez algorytm Dijkstry.

Bibliografia

  • A. Debudaj-Grabysz, S. Deorowicz, J. Widuch, Algorytmy i struktury danych. Wybór zaawansowanych metod, Wydawnictwo Politechniki Śląskiej, Gliwice, 2012, ISBN 9788373359383.
Ocena: +3 Tak Nie
Liczba głosów: 3.

Dodano: 12 sierpnia 2017 13:55, ostatnia edycja: 30 stycznia 2019 15:53.

REKLAMA

Zobacz też

Problem wydawania reszty (ang. change-making problem) – problem obliczeniowy polegający na tym, aby mając określony zbiór nominałów wyrazić daną kwotę za pomocą jak najmniejszej liczby monet. Jest to szczególny przypadek problemu plecakowego.

→ Czytaj całość

Powtarzalny algorytm najbliższego sąsiada (ang. repetitive nearest neighbour algorithm, w skrócie RNN) – algorytm służący do rozwiązywania problemu komiwojażera korzystający z algorytmu najbliższego sąsiada.

Algorytm polega na wielokrotnym wykonaniu algorytmu najbliższego sąsiada w taki sposób, aby każdy wierzchołek raz był wierzchołkiem początkowym. Następnie algorytm zwraca najlepsze spośród otrzymanych rozwiązań.

Dla grafu pełnego algorytm ma złożoność O(n3), gdzie n jest liczbą wierzchołków. W trakcie wykonywania algorytmu RNN n razy zostanie wykonany algorytm najbliższego sąsiada, który ma złożoność czasową O(n2).

Algorytm RNN nie daje gwarancji znalezienia rozwiązania optymalnego. W odróżnieniu od algorytmu najbliższego sąsiada daje jednak gwarancję, że zwróci rozwiązanie co najmniej tak dobre, jak n/2-1 innych rozwiązań (dowód i więcej informacji na ten temat znajduje się w pracy podanej w bibliografii).

→ Czytaj całość

Matroid – struktura matematyczna składająca się z niepustego zbioru elementów E i takiej rodziny jego podzbiorów I, że spełnione są następujące warunki:

  1. Jeśli jakiś zbiór należy do I, to wszystkie jego podzbiory także należą do I.
  2. Jeśli weźmiemy dowolne dwa zbiory należące do I o różnej liczbie elementów, to jesteśmy w stanie dodać do mniejszego z nich taki element z większego (spośród tych, które nie należą do mniejszego), że utworzony w ten sposób zbiór także będzie należał do I.

Drugi warunek, zwany własnością wymiany, formalnie może być zapisany jako:

$$⋀↙{A,B∊I}↙{ |A|>|B| }⋁↙{t∊(A-B)} B∪\{t\} ∈ I$$

Co istotne, rodzina zbiorów I nie musi zawierać wszystkich możliwych podzbiorów zbioru E. Ważne tylko, aby była spełniona własność wymiany. Przykładowo, dla E={a,b,c,d} prawidłową rodziną I, może być zarówno { {a,b}, {b,c}, {a}, {b}, {c}, ∅}, jak i { {a}, {b}, {c}, {d}, ∅}. Trywialnym przypadkiem poprawnego matroidu jest taki, w którym rodzina I zawiera jedynie zbiór pusty.

→ Czytaj całość
Polityka prywatnościKontakt