Matroid – struktura matematyczna składająca się z niepustego zbioru elementów E i takiej rodziny jego podzbiorów I, że spełnione są następujące warunki:
Drugi warunek, zwany własnością wymiany, formalnie może być zapisany jako:
$$⋀↙{A,B∊I}↙{ |A|>|B| }⋁↙{t∊(A-B)} B∪\{t\} ∈ I$$Co istotne, rodzina zbiorów I nie musi zawierać wszystkich możliwych podzbiorów zbioru E. Ważne tylko, aby była spełniona własność wymiany. Przykładowo, dla E={a,b,c,d} prawidłową rodziną I, może być zarówno { {a,b}, {b,c}, {a}, {b}, {c}, ∅}, jak i { {a}, {b}, {c}, {d}, ∅}. Trywialnym przypadkiem poprawnego matroidu jest taki, w którym rodzina I zawiera jedynie zbiór pusty.
Zbiory należące do I określane są jako zbiory niezależne. Zbiór niezależny o największej liczbie elementów to baza matroidu. Matroid może mieć wiele baz. W pierwszym wspomnianym wcześniej przykładzie bazami są zbiory {a,b} i {b,c}, w drugim zaś zbiory {a}, {b}, {c}, {d}.
Jeśli każdy element zbioru E ma przyporządkowaną dodatnią liczbę (wagę), to taki matroid jest określany jako matroid ważony. Każdemu zbiorowi niezależnemu również można wtedy przyporządkować wagę, będącą sumą wag wszystkich należących do niego elementów. Dla matroidów grafowych (tzn. takich, w których elementy zbioru E są krawędziami grafu), wagą może być długość krawędzi.
Więcej pojęć związanych z matroidami można znaleźć w książce [1].
Matroidy ważone mają duże zastosowanie przy ocenie skuteczności algorytmów zachłannych. Udowodniono, że jeśli problem obliczeniowy da się przedstawić za pomocą matroidu ważonego, to algorytm zachłanny zawsze zwróci rozwiązanie optymalne (dowód jest dostępny w książce [2]). W takim przypadku, jeśli do naszego rozwiązania będziemy zawsze dodawać ten spośród dostępnych elementów zbioru E, który ma największą wagę, to otrzymamy bazę matroidu o największej wadze spośród wszystkich baz. Przykładem takiego algorytmu jest algorytm Kruskala.
Dodano: 24 kwietnia 2020 13:50, ostatnia edycja: 24 kwietnia 2020 18:28.
Dziel i zwyciężaj (ang. divide and conquer) – technika projektowania algorytmów polegająca na podejściu rekurencyjnym. W technice tej problem dzielony jest na mniejsze podproblemy, te podproblemy na jeszcze mniejsze podproblemy, aż dojdzie się do przypadków trywialnych (np. posortowanie jednoelementowej tablicy, obliczenie silni z 1).
Jeśli rozpatrywany problem wymaga podzielenia na podproblemy, jest on określany jako przypadek rekurencyjny. Jeśli mamy do czynienia z przypadkiem trywialnym, jest to przypadek bazowy. Tworząc algorytm wykorzystujący metodę dziel i zwyciężaj musimy ustalić:
Przykładem algorytmu opartego na tej metodzie jest sortowanie przez scalanie.
Drzewo decyzyjne – metoda graficzna wspierająca podejmowanie decyzji, jak również model stosowany w uczeniu maszynowym do klasyfikacji lub regresji.
Podejmowanie decyzji z wykorzystaniem drzewa decyzyjnego odbywa się poprzez odpowiadanie na kolejne pytania. Pojedyncze pytanie musi być proste i dotyczyć jednego konkretnego atrybutu. Pytania ułożone są w strukturę hierarchiczną – wybór następnego pytania (lub końcowej decyzji) zależy od odpowiedzi udzielonej na poprzednie.
Proste drzewo decyzyjne może być w pełni zaprojektowane już przy tworzeniu programu i zaimplementowane w kodzie np. za pomocą instrukcji warunkowych. W uczeniu maszynowym drzewo jest generowane automatycznie na podstawie próbek ze zbioru uczącego.
Algorytm genetyczny – jedna z metaheurystyk inspirowanych biologiczną ewolucją.
Pojęcie algorytmu genetycznego nie jest powiązane z żadnym konkretnym problemem obliczeniowym, algorytm ten może być wykorzystywany do rozwiązywania różnych problemów. Algorytm genetyczny nie próbuje rozwiązywać problemu w sposób analityczny, ale próbuje uzyskać jak najlepsze rozwiązania poprzez wybieranie jak najlepszych cech rozwiązań z określonej puli. Implementując algorytm genetyczny należy przedstawić potencjalne rozwiązanie problemu w postaci jakiejś struktury danych, a następnie zdefiniować operacje krzyżowania, mutacji i selekcji. Zakładamy, że z każdym kolejnym pokoleniem rozwiązania występujące w populacji będą coraz lepsze.