Matroid – struktura matematyczna składająca się z niepustego zbioru elementów E i takiej rodziny jego podzbiorów I, że spełnione są następujące warunki:
Drugi warunek, zwany własnością wymiany, formalnie może być zapisany jako:
$$⋀↙{A,B∊I}↙{ |A|>|B| }⋁↙{t∊(A-B)} B∪\{t\} ∈ I$$Co istotne, rodzina zbiorów I nie musi zawierać wszystkich możliwych podzbiorów zbioru E. Ważne tylko, aby była spełniona własność wymiany. Przykładowo, dla E={a,b,c,d} prawidłową rodziną I, może być zarówno { {a,b}, {b,c}, {a}, {b}, {c}, ∅}, jak i { {a}, {b}, {c}, {d}, ∅}. Trywialnym przypadkiem poprawnego matroidu jest taki, w którym rodzina I zawiera jedynie zbiór pusty.
Zbiory należące do I określane są jako zbiory niezależne. Zbiór niezależny o największej liczbie elementów to baza matroidu. Matroid może mieć wiele baz. W pierwszym wspomnianym wcześniej przykładzie bazami są zbiory {a,b} i {b,c}, w drugim zaś zbiory {a}, {b}, {c}, {d}.
Jeśli każdy element zbioru E ma przyporządkowaną dodatnią liczbę (wagę), to taki matroid jest określany jako matroid ważony. Każdemu zbiorowi niezależnemu również można wtedy przyporządkować wagę, będącą sumą wag wszystkich należących do niego elementów. Dla matroidów grafowych (tzn. takich, w których elementy zbioru E są krawędziami grafu), wagą może być długość krawędzi.
Więcej pojęć związanych z matroidami można znaleźć w książce [1].
Matroidy ważone mają duże zastosowanie przy ocenie skuteczności algorytmów zachłannych. Udowodniono, że jeśli problem obliczeniowy da się przedstawić za pomocą matroidu ważonego, to algorytm zachłanny zawsze zwróci rozwiązanie optymalne (dowód jest dostępny w książce [2]). W takim przypadku, jeśli do naszego rozwiązania będziemy zawsze dodawać ten spośród dostępnych elementów zbioru E, który ma największą wagę, to otrzymamy bazę matroidu o największej wadze spośród wszystkich baz. Przykładem takiego algorytmu jest algorytm Kruskala.
Dodano: 24 kwietnia 2020 13:50, ostatnia edycja: 24 kwietnia 2020 18:28.
Matroid – struktura matematyczna składająca się z niepustego zbioru elementów E i takiej rodziny jego podzbiorów I, że spełnione są następujące warunki:
Drugi warunek, zwany własnością wymiany, formalnie może być zapisany jako:
$$⋀↙{A,B∊I}↙{ |A|>|B| }⋁↙{t∊(A-B)} B∪\{t\} ∈ I$$Co istotne, rodzina zbiorów I nie musi zawierać wszystkich możliwych podzbiorów zbioru E. Ważne tylko, aby była spełniona własność wymiany. Przykładowo, dla E={a,b,c,d} prawidłową rodziną I, może być zarówno { {a,b}, {b,c}, {a}, {b}, {c}, ∅}, jak i { {a}, {b}, {c}, {d}, ∅}. Trywialnym przypadkiem poprawnego matroidu jest taki, w którym rodzina I zawiera jedynie zbiór pusty.
Kolejka (ang. Queue) – struktura danych, w której elementy pobierane są z początku, a dodawane na końcu. Z kolejki można zatem pobrać tylko ten element, który był dodany najwcześniej. Kolejka bywa określana również jako kolejka FIFO (z ang. First In, First Out), w odróżnieniu od kolejki LIFO, czyli stosu.
Algorytm Bellmana-Forda – algorytm służący do wyznaczania najkrótszych ścieżek w grafie. Wyznacza najkrótsze ścieżki z jednego wierzchołka (zwanego wierzchołkiem źródłowym) do pozostałych wierzchołków. W odróżnieniu od algorytmu Dijkstry, algorytm Bellmana-Forda dopuszcza krawędzie o ujemnych wagach, nie mogą istnieć jednak ujemne cykle osiągalne z wierzchołka źródłowego. Algorytm może być również wykorzystywany do sprawdzania, czy w grafie występują ujemne cykle.
Algorytm występuje również pod nazwą algorytm Bellmana-Forda-Moore’a.