Graf – struktura G = (V, E) składająca się ze skończonego zbioru wierzchołków V oraz skończonego zbioru krawędzi E, gdzie każda krawędź e ∈ E jest dwuelementowym zbiorem wierzchołków u, v ∈ V. Wierzchołki u, v połączone krawędzią e = {u, v} określane są sąsiednimi. Grafy mają szerokie zastosowanie w informatyce, można za ich pomocą przedstawiać rożnego rodzaju relacje pomiędzy obiektami.
Powyższa definicja dotyczy grafu nieskierowanego, gdzie relacja sąsiedztwa jest symetryczna, tzn. krawędź łączy wierzchołki „w obie strony”. W grafie skierowanym krawędzie są „jednokierunkowe”. Krawędź grafu skierowanego zazwyczaj jest określana jako łuk.
Graf ważony (inaczej graf z wagami) to taki graf, w którym każdej krawędzi przypisana jest pewna wartość liczbowa. Wartość ta może oznaczać np. długość krawędzi lub jej przepustowość.
Terminologia dotycząca grafów może różnić się w zależności od źródła. Przykładowo, czasami trasa określana jest jako droga.
W pamięci komputera grafy zazwyczaj są przechowywane w postaci list lub macierzy sąsiedztwa. W przypadku list sąsiedztwa każdemu wierzchołkowi przyporządkowana jest lista wierzchołków z nim sąsiadujących. W przypadku macierzy sąsiedztwa w pamięci przechowywana jest macierz, w której każdy wiersz i każda kolumna odpowiada innemu wierzchołkowi. Liczba na przecięciu wiersza i kolumny informuje, ile krawędzi łączy daną parę wierzchołków (w przypadku grafu ważonego prostego można tam zamieścić wagę krawędzi). W przypadku grafu nieskierowanego macierz jest symetryczna.
Dodano: 6 grudnia 2017 10:31, ostatnia edycja: 28 grudnia 2022 16:19.
Ten artykuł opisuje pewną modyfikację algorytmu opartego na programowaniu dynamicznym rozwiązującego problem wydawania reszty. Algorytm ten daje gwarancję znalezienia rozwiązania optymalnego. Algorytm zaproponował J.W. Wright w pracy The Change-Making Problem (link w bibliografii).
K-opt, algorytm k-optymalny – algorytm lokalnej optymalizacji wykorzystywany przy rozwiązywaniu problemu komiwojażera. Algorytm ten nie służy do samego wyznaczania trasy, a jedynie do ulepszania jej. Najprostszą wersją tego algorytmu jest algorytm 2-optymalny.