Programowanie w języku C. Ćwiczenia praktyczne. Wydanie II
19,90 zł
Szkoła programisty PLC. Język LAD w programowaniu sterowników przemysłowych
−30%41,30 zł
Algorytmy bez tajemnic
44,90 zł
Czysty kod. Podręcznik dobrego programisty
69,00 zł
Cyberwojna. Metody działania hakerów
49,00 zł
Bitcoin dla zaawansowanych. Programowanie z użyciem otwartego łańcucha bloków. Wydanie II
69,00 zł

Graf

Minimalne drzewo rozpinające, przykład Graf prosty (po lewej) i drzewo (po prawej)
Graf, 4 wierzchołki Graf pełny z wagami
Graf skierowany Graf skierowany z wagami

Graf – struktura składająca się ze zbioru wierzchołków oraz zbioru krawędzi. Grafy mają szerokie zastosowanie w informatyce, można za ich pomocą przedstawić wiele zagadnień.

Wyróżniamy grafy nieskierowane oraz grafy skierowane. W grafie nieskierowanym relacja sąsiedztwa jest symetryczna, tzn. krawędź łączy wierzchołki „w obie strony”. W grafie skierowanym krawędzie są „jednokierunkowe”. Krawędź grafu skierowanego zazwyczaj jest określana jako łuk.

Graf ważony (inaczej graf z wagami) to taki graf, w którym każdej krawędzi przypisana jest pewna wartość liczbowa. Wartość ta może oznaczać np. długość krawędzi lub jej przepustowość.

Wybrane pojęcia związane z teorią grafów

  • Trasa – ciąg kolejnych krawędzi, za pomocą którego możemy przejść z jednego wierzchołka grafu do innego (lub wrócić do tego samego).
  • Ścieżka – trasa, w której każdy wierzchołek występuje co najwyżej raz. Wyjątkiem jest wierzchołek końcowy, który może być wierzchołkiem początkowym – taka ścieżka to cykl.
  • Droga (ścieżka prosta) – trasa, w której każdy wierzchołek występuje co najwyżej raz (wyjątek: cykl).
  • Pętla – krawędź prowadząca z wierzchołka do niego samego.
  • Krawędź wielokrotna – kilka krawędzi łączących tę samą parę wierzchołków.
  • Graf prosty – graf nie zawierający żadnych pętli ani krawędzi wielokrotnych.
  • Graf spójny – graf, w którym można wyznaczyć ścieżkę między każdą parą wierzchołków.
  • Graf pełny – graf prosty, w którym każda para wierzchołków jest bezpośrednio połączona krawędzią.
  • Drzewo – graf spójny nie mający żadnych cykli (taki, w którym między każdą parą wierzchołków można wyznaczyć dokładnie jedną ścieżkę).

Reprezentacja w pamięci komputera

W pamięci komputera grafy zazwyczaj są przechowywane w postaci list lub macierzy sąsiedztwa. W przypadku list sąsiedztwa każdemu wierzchołkowi przyporządkowana jest lista wierzchołków z nim sąsiadujących. W przypadku macierzy sąsiedztwa w pamięci przechowywana jest macierz, w której każdy wiersz i każda kolumna odpowiada innemu wierzchołkowi. Liczba na przecięciu wiersza i kolumny informuje, ile krawędzi łączy daną parę wierzchołków (w przypadku grafu ważonego prostego można tam zamieścić wagę krawędzi). W przypadku grafu nieskierowanego macierz jest symetryczna.

Bibliografia

  1. R.J. Wilson, Wprowadzenie do teorii grafów, Wydawnictwo Naukowe PWN, Warszawa 2012.
Ocena: 0 Tak Nie
Liczba głosów: 0.

Dodano: 6 grudnia 2017 10:31, ostatnia edycja: 6 grudnia 2017 13:38.

Zobacz też

Notacja dużego O – notacja przedstawiająca asymptotyczne tempo wzrostu, wykorzystywana do zapisywania złożoności obliczeniowej algorytmu. Za pomocą tej notacji zapisywany jest rząd wielkości funkcji wyrażającej liczbę operacji dominujących (w przypadku złożoności czasowej) lub rozmiar wymaganej pamięci (w przypadku złożoności pamięciowej) w zależności od liczby danych wejściowych.

Wykorzystując notację dużego O nie podajemy dokładnego wzoru funkcji, a jedynie jej najbardziej znaczący składnik, w dodatku z pominięciem stałego współczynnika. Przykładowo, funkcję postaci f(n)=5n2+20n+100 możemy zapisać jako O(n2). Zakładamy bowiem, że dla dostatecznie dużych n wpływ pomijanych elementów jest znikomy. Choć oczywiście dla małych n może się zdarzyć, że funkcja o gorszej złożoności będzie się wykonywała szybciej.

Weźmy dla przykładu funkcje f(n) = 1000n+2000 i g(n) = n2. Choć pierwsza funkcja ma pozornie bardzo duże stałe współczynniki, to dla n ≥ 1002 będzie ona przyjmowała wartości mniejsze. Im większe n, tym ta różnica będzie wyraźniejsza. Dla n = 10000 (w przypadku danych przetwarzanych komputerowo nie jest to wielka wartość) f(n) = 10002000 (ok. 10 mln), a g(n) = 100000000 (100 mln), czyli blisko 10 razy więcej.

Możliwe jest również wykorzystanie notacji dużego O dla funkcji wielu zmiennych. Wówczas zapis może wyglądać tak: O(v2e). Znajduje to zastosowanie np. dla algorytmów operujących na grafach, gdzie złożoność zależy zarówno od liczby wierzchołków, jak i liczby krawędzi w grafie.

→ Czytaj całość
Algorytm najmniejszej krawędzi – algorytm służący do rozwiązywania problemu komiwojażera. Jest to algorytm wykorzystujący strategię zachłanną, jednak w inny sposób, niż algorytm najbliższego sąsiada. W anglojęzycznej literaturze algorytm jest najczęściej określany po prostu jako greedy algorithm (algorytm zachłanny), w skrócie GR.
→ Czytaj całość

Problem komiwojażera (ang. travelling salesman problem, w skrócie TSP) – problem obliczeniowy polegający na poszukiwaniu w grafie takiego cyklu, który zawiera wszystkie wierzchołki (każdy dokładnie raz) i ma jak najmniejszy koszt. Bardziej formalnie, problem komiwojażera polega na poszukiwaniu w grafie cyklu Hammiltona o najmniejszej wadze.

Problem ma liczne zastosowania w życiu codziennym. Najlepszym przykładem jest praca kuriera, który musi wyjechać z magazynu, zawieźć przesyłki w różne miejsca i wrócić do magazynu.

Nie jest znany efektywny (tj. działający w czasie co najwyżej wielomianowym) algorytm dający gwarancję znalezienia optymalnego rozwiązania problemu komiwojażera. Problem ten jest bowiem zaliczany do klasy problemów NP-trudnych. W wersji decyzyjnej (czy istnieje cykl o długości mniejszej od x) problem jest zaliczany do klasy problemów NP-zupełnych. W grafie pełnym mającym n wierzchołków liczba możliwych cykli Hammiltona wynosi aż (n-1)!/2. W praktyce sprawdzenie wszystkich możliwości jest zatem wykonalne tylko dla niewielkiej liczby wierzchołków.

→ Czytaj całość
Polityka prywatnościKontakt