Graf – struktura G = (V, E) składająca się ze skończonego zbioru wierzchołków V oraz skończonego zbioru krawędzi E, gdzie każda krawędź e ∈ E jest dwuelementowym zbiorem wierzchołków u, v ∈ V. Wierzchołki u, v połączone krawędzią e = {u, v} określane są sąsiednimi. Grafy mają szerokie zastosowanie w informatyce, można za ich pomocą przedstawiać rożnego rodzaju relacje pomiędzy obiektami.
Powyższa definicja dotyczy grafu nieskierowanego, gdzie relacja sąsiedztwa jest symetryczna, tzn. krawędź łączy wierzchołki „w obie strony”. W grafie skierowanym krawędzie są „jednokierunkowe”. Krawędź grafu skierowanego zazwyczaj jest określana jako łuk.
Graf ważony (inaczej graf z wagami) to taki graf, w którym każdej krawędzi przypisana jest pewna wartość liczbowa. Wartość ta może oznaczać np. długość krawędzi lub jej przepustowość.
Terminologia dotycząca grafów może różnić się w zależności od źródła. Przykładowo, czasami trasa określana jest jako droga.
W pamięci komputera grafy zazwyczaj są przechowywane w postaci list lub macierzy sąsiedztwa. W przypadku list sąsiedztwa każdemu wierzchołkowi przyporządkowana jest lista wierzchołków z nim sąsiadujących. W przypadku macierzy sąsiedztwa w pamięci przechowywana jest macierz, w której każdy wiersz i każda kolumna odpowiada innemu wierzchołkowi. Liczba na przecięciu wiersza i kolumny informuje, ile krawędzi łączy daną parę wierzchołków (w przypadku grafu ważonego prostego można tam zamieścić wagę krawędzi). W przypadku grafu nieskierowanego macierz jest symetryczna.
Dodano: 6 grudnia 2017 10:31, ostatnia edycja: 28 grudnia 2022 16:19.
Matroid – struktura matematyczna składająca się z niepustego zbioru elementów E i takiej rodziny jego podzbiorów I, że spełnione są następujące warunki:
Drugi warunek, zwany własnością wymiany, formalnie może być zapisany jako:
$$⋀↙{A,B∊I}↙{ |A|>|B| }⋁↙{t∊(A-B)} B∪\{t\} ∈ I$$Co istotne, rodzina zbiorów I nie musi zawierać wszystkich możliwych podzbiorów zbioru E. Ważne tylko, aby była spełniona własność wymiany. Przykładowo, dla E={a,b,c,d} prawidłową rodziną I, może być zarówno { {a,b}, {b,c}, {a}, {b}, {c}, ∅}, jak i { {a}, {b}, {c}, {d}, ∅}. Trywialnym przypadkiem poprawnego matroidu jest taki, w którym rodzina I zawiera jedynie zbiór pusty.
Drzewo decyzyjne – metoda graficzna wspierająca podejmowanie decyzji, jak również model stosowany w uczeniu maszynowym do klasyfikacji lub regresji.
Podejmowanie decyzji z wykorzystaniem drzewa decyzyjnego odbywa się poprzez odpowiadanie na kolejne pytania. Pojedyncze pytanie musi być proste i dotyczyć jednego konkretnego atrybutu. Pytania ułożone są w strukturę hierarchiczną – wybór następnego pytania (lub końcowej decyzji) zależy od odpowiedzi udzielonej na poprzednie.
Proste drzewo decyzyjne może być w pełni zaprojektowane już przy tworzeniu programu i zaimplementowane w kodzie np. za pomocą instrukcji warunkowych. W uczeniu maszynowym drzewo jest generowane automatycznie na podstawie próbek ze zbioru uczącego.
Metoda przyrostowa – technika projektowania algorytmów polegająca na dodawaniu do rozwiązania kolejnych elementów z danych wejściowych. Przykładem algorytmu opartego na tej metodzie jest sortowanie przez wstawianie, gdzie kolejne elementy są wstawiane do posortowanej części tablicy.
Jest to metoda prosta, jednak sprawdza się tylko dla niektórych problemów obliczeniowych.