Graf

Minimalne drzewo rozpinające, przykład (1) Graf prosty (po lewej) i drzewo (po prawej)
Graf, 4 wierzchołki (2) Graf pełny z wagami
Graf skierowany (3) Graf skierowany z wagami

Graf – struktura składająca się ze zbioru wierzchołków oraz zbioru krawędzi. Grafy mają szerokie zastosowanie w informatyce, można za ich pomocą przedstawić wiele zagadnień.

Wyróżniamy grafy nieskierowane oraz grafy skierowane. W grafie nieskierowanym relacja sąsiedztwa jest symetryczna, tzn. krawędź łączy wierzchołki „w obie strony”. W grafie skierowanym krawędzie są „jednokierunkowe”. Krawędź grafu skierowanego zazwyczaj jest określana jako łuk.

Graf ważony (inaczej graf z wagami) to taki graf, w którym każdej krawędzi przypisana jest pewna wartość liczbowa. Wartość ta może oznaczać np. długość krawędzi lub jej przepustowość.

Wybrane pojęcia związane z teorią grafów

  • Trasa – ciąg kolejnych krawędzi, za pomocą którego możemy przejść z jednego wierzchołka grafu do innego (lub wrócić do tego samego).
  • Ścieżka – trasa, w której każda krawędź występuje co najwyżej raz (mogą natomiast powtarzać się wierzchołki).
  • Droga (ścieżka prosta) – trasa, w której każdy wierzchołek występuje co najwyżej raz. Wyjątkiem jest wierzchołek końcowy, który może być wierzchołkiem początkowym – taka ścieżka to cykl.
  • Pętla – krawędź prowadząca z wierzchołka do niego samego.
  • Krawędź wielokrotna – kilka krawędzi łączących tę samą parę wierzchołków.
  • Graf prosty – graf nie zawierający żadnych pętli ani krawędzi wielokrotnych.
  • Graf spójny – graf, w którym można wyznaczyć ścieżkę między każdą parą wierzchołków.
  • Graf pełny – graf prosty, w którym każda para wierzchołków jest bezpośrednio połączona krawędzią.
  • Drzewo – graf spójny nie mający żadnych cykli (taki, w którym między każdą parą wierzchołków można wyznaczyć dokładnie jedną ścieżkę).

Reprezentacja w pamięci komputera

W pamięci komputera grafy zazwyczaj są przechowywane w postaci list lub macierzy sąsiedztwa. W przypadku list sąsiedztwa każdemu wierzchołkowi przyporządkowana jest lista wierzchołków z nim sąsiadujących. W przypadku macierzy sąsiedztwa w pamięci przechowywana jest macierz, w której każdy wiersz i każda kolumna odpowiada innemu wierzchołkowi. Liczba na przecięciu wiersza i kolumny informuje, ile krawędzi łączy daną parę wierzchołków (w przypadku grafu ważonego prostego można tam zamieścić wagę krawędzi). W przypadku grafu nieskierowanego macierz jest symetryczna.

Bibliografia

  • R.J. Wilson, Wprowadzenie do teorii grafów, Wydawnictwo Naukowe PWN, Warszawa, 2012, ISBN 9788301150662.
Ocena: 0 Tak Nie
Liczba głosów: 0.

Dodano: 6 grudnia 2017 10:31, ostatnia edycja: 30 stycznia 2019 15:58.

REKLAMA

Zobacz też

Quicksort, sortowanie szybkie – algorytm sortowania działający w średnim przypadku w czasie liniowo-logarytmicznym. Algorytm jest oparty na metodzie dziel i zwyciężaj. Nie jest to algorytm stabilny ani wykazujący zachowanie naturalne, jednak ze względu na efektywność jest algorytmem bardzo popularnym.

→ Czytaj całość

Powtarzalny algorytm najbliższego sąsiada (ang. repetitive nearest neighbour algorithm, w skrócie RNN) – algorytm służący do rozwiązywania problemu komiwojażera korzystający z algorytmu najbliższego sąsiada.

Algorytm polega na wielokrotnym wykonaniu algorytmu najbliższego sąsiada w taki sposób, aby każdy wierzchołek raz był wierzchołkiem początkowym. Następnie algorytm zwraca najlepsze spośród otrzymanych rozwiązań.

Dla grafu pełnego algorytm ma złożoność O(n3), gdzie n jest liczbą wierzchołków. W trakcie wykonywania algorytmu RNN n razy zostanie wykonany algorytm najbliższego sąsiada, który ma złożoność czasową O(n2).

Algorytm RNN nie daje gwarancji znalezienia rozwiązania optymalnego. W odróżnieniu od algorytmu najbliższego sąsiada daje jednak gwarancję, że zwróci rozwiązanie co najmniej tak dobre, jak n/2-1 innych rozwiązań (dowód i więcej informacji na ten temat znajduje się w pracy podanej w bibliografii).

→ Czytaj całość

Algorytmy zachłanne (ang. greedy algorithms) – algorytmy podejmujące w każdym kroku taką decyzję, która w danej chwili wydaje się najkorzystniejsza. Inaczej mówiąc, algorytmy zachłanne dokonują zawsze wyborów lokalnie optymalnych licząc, że doprowadzi to do znalezienia rozwiązania globalnie optymalnego. W ogólnym przypadku algorytmy zachłanne nie zawsze znajdują rozwiązanie optymalne. Są one zatem podzbiorem algorytmów heurystycznych. Jednocześnie są to algorytmy deterministyczne – nie ma w nich losowości.

Bardzo prostym przykładem algorytmu zachłannego może być szukanie najwyższego punktu na określonym obszarze poprzez przesuwanie się zawsze w kierunku największego nachylenia (nigdy się nie cofając ani nie rozpatrując kilku wariantów drogi). Jak widać, w ten sposób prawdopodobnie dojdziemy do wierzchołka położonego najbliżej od punktu początkowego, który niekoniecznie będzie najwyższym.

→ Czytaj całość
Polityka prywatnościKontakt