Algorytmy
49,00 zł
Nowoczesne receptury w Javie. Proste rozwiązania trudnych problemów
−30%38,43 zł
Wprowadzenie do obliczeń równoległych
−16%49,45 zł
Informatyka Europejczyka. Podręcznik dla szkoły podstawowej. Klasa 8
9,90 zł
Python. Uczenie maszynowe
69,00 zł
TDD. Techniki programowania sterowanego testami
59,00 zł

Metoda Forda-Fulkersona

Sieć przepływowa i residualna Sieć przepływowa z pewnym przepływem (na górze), odpowiadająca jej sieć residualna (w środku) z zaznaczoną ścieżką powiększającą i ta sama sieć przepływowa po zwiększeniu przepływu (na dole)

Metoda Forda-Fulkersona – algorytm służący do wyznaczania maksymalnego przepływu. Jest to algorytm bardzo ogólny, dlatego często nie jest nazywany algorytmem, a metodą. Popularną implementacją tej metody jest algorytm Edmondsa-Karpa. Algorytm można opisać następująco:

  1. Wyznacz sieć residualną (opis sieci residualnej znajduje się w dalszej części artykułu).
  2. Znajdź w sieci residualnej dowolną ścieżkę powiększającą.
  3. Jeśli nie udało się wyznaczyć żadnej ścieżki powiększającej, zakończ działanie algorytmu.
  4. W przeciwnym razie zwiększ przepływ w sieci (w sposób opisany w dalszej części artukułu) i wróć do punktu 1.

Sieć residualna i ścieżka powiększająca

Sieć residualna jest grafem skierowanym tworzonym na podstawie sieci przepływowej i jej aktualnego przepływu. Wagi łuków w sieci residualnej oznaczają, o ile można zmienić przepływ w odpowiadającym mu łuku sieci przepływowej.

Liczba i układ łuków w sieci residualnej mogą być nieco inne, niż w sieci przepływowej. Jeśli przepływ w danym łuku sieci przepływowej jest większy od zera, to przepływ w tym łuku da się zmniejszyć – w sieci residualnej pojawi się wówczas dodatkowo łuk skierowany w przeciwną stronę, niż łuk w sieci przepływowej. Jeśli natomiast przepływ w łuku sieci przepływowej jest już maksymalny, to nie można go zwiększyć, zatem taki łuk nie będzie występował w sieci residualnej (będzie występował tylko łuk o przeciwnym zwrocie).

Ścieżka powiększająca to ścieżka w sieci residualnej prowadząca od źródła do ujścia. Najmniejsza spośród wag łuków należących do ścieżki powiekszającej jest określana jako jej przepustowość residualna. Jest to wartość, o którą można zwiększyć przepływ w sieci przepływowej.

Powiększenie przepływu w sieci o ścieżkę powiększającą można opisać następująco. Dla każdego łuku należącego do ścieżki powiększającej:

  • Jeśli taki łuk istnieje w sieci przepływowej, zwiększ jego przepływ o przepustowość residualną ścieżki powiększającej.
  • Jeśli taki łuk nie istnieje w sieci przepływowej, zmniejsz przepływ w łuku o przeciwnym zwrocie o przepustowość residualną ścieżki powiększającej.

Złożoność obliczeniowa

Ze względu na to, że metoda Forda-Fulkersona jest algorytmem bardzo ogólnym, złożoność obliczeniowa zależy od konkretnej implementacji. Jeśli założymy, że przepływy w łukach są liczbami naturalnymi, to możemy oszacować górne ograniczenie tej złożoności. W każdej iteracji algorytmu powiększymy przepływ o co najmniej 1, zatem liczba wykonań głównej pętli algorytmu będzie mniejsza bądź równa od maksymalnego przepływu (oznaczmy go f). W trakcie wyznaczania ścieżki powiększającej i zwiększania przepływu musimy przejrzeć w najgorszym wypadku wszystkie krawędzie (oznaczmy ich liczbę jako e). Kres górny złożoności czasowej jest zatem rzędu O(fe).

Bibliografia

  1. T.H. Cormen, Ch.E. Leiserson, R.L. Rivest, C. Stein, Wprowadzenie do algorytmów, Wydawnictwo Naukowe PWN, Warszawa, 2012.
  2. A. Debudaj-Grabysz, S. Deorowicz, J. Widuch, Algorytmy i struktury danych. Wybór zaawansowanych metod, Wydawnictwo Politechniki Śląskiej, Gliwice, 2012
Ocena: 0 Tak Nie
Liczba głosów: 0.

Dodano: 12 grudnia 2017 15:56.

Zobacz też

Algorytm Dijkstry – algorytm służący do wyznaczania najkrótszych ścieżek w grafie. Wyznacza najkrótsze ścieżki z jednego wierzchołka (zwanego wierzchołkiem źródłowym) do pozostałych wierzchołków. Algorytm wymaga, aby wagi krawędzi grafu nie były ujemne. Autorem algorytmu jest holenderski naukowiec Edsger Dijkstra.

Algorytm realizuje podejście zachłanne. W każdej iteracji wybierany jest ten spośród nieodwiedzonych wierzchołków, do którego można dotrzeć najmniejszym kosztem. Po wyznaczeniu ścieżki do konkretnego wierzchołka nie zostanie ona zmodyfikowana w trakcie wykonywania dalszej części algorytmu.

→ Czytaj całość

Sortowanie – zagadnienie polegające na uporządkowaniu elementów zbioru rosnąco lub malejąco według pewnego klucza. Zagadnienie to, ze względu na częstość występowania, jest bardzo istotne dla informatyki. Istnieje wiele różnych algorytmów realizujących sortowanie.

→ Czytaj całość

Algorytm Floyda-Warshalla – algorytm służący do wyznaczania najkrótszych ścieżek pomiędzy każdą parą wierzchołków w grafie. Jest to algorytm oparty na programowaniu dynamicznym. Algorytm ma złożoność czasową O(n3) i złożoność pamięciową O(n2), gdzie n jest liczbą wierzchołków.

Algorytm dopuszcza krawędzie o ujemnych wagach, o ile nie tworzą ujemnych cykli. Algorytm może być również wykorzystywany do wyszukiwania ujemnych cykli w grafie.

→ Czytaj całość
Polityka prywatnościKontakt