Metoda Forda-Fulkersona

Sieć przepływowa i residualna (1) Sieć przepływowa z pewnym przepływem (na górze), odpowiadająca jej sieć residualna (w środku) z zaznaczoną ścieżką powiększającą i ta sama sieć przepływowa po zwiększeniu przepływu (na dole)
REKLAMA

Czysty kod. Podręcznik dobrego programisty
−40%41,40 zł
Algorytmy
69,00 zł

Metoda Forda-Fulkersona – algorytm służący do wyznaczania maksymalnego przepływu. Jest to algorytm bardzo ogólny, dlatego często nie jest nazywany algorytmem, a metodą. Popularną implementacją tej metody jest algorytm Edmondsa-Karpa. Algorytm można opisać następująco:

  1. Wyznacz sieć residualną (opis sieci residualnej znajduje się w dalszej części artykułu).
  2. Znajdź w sieci residualnej dowolną ścieżkę powiększającą.
  3. Jeśli nie udało się wyznaczyć żadnej ścieżki powiększającej, zakończ działanie algorytmu.
  4. W przeciwnym razie zwiększ przepływ w sieci (w sposób opisany w dalszej części artukułu) i wróć do punktu 1.

Sieć residualna i ścieżka powiększająca

Sieć residualna jest grafem skierowanym tworzonym na podstawie sieci przepływowej i jej aktualnego przepływu. Wagi łuków w sieci residualnej oznaczają, o ile można zmienić przepływ w odpowiadającym mu łuku sieci przepływowej.

Liczba i układ łuków w sieci residualnej mogą być nieco inne, niż w sieci przepływowej. Jeśli przepływ w danym łuku sieci przepływowej jest większy od zera, to przepływ w tym łuku da się zmniejszyć – w sieci residualnej pojawi się wówczas dodatkowo łuk skierowany w przeciwną stronę, niż łuk w sieci przepływowej. Jeśli natomiast przepływ w łuku sieci przepływowej jest już maksymalny, to nie można go zwiększyć, zatem taki łuk nie będzie występował w sieci residualnej (będzie występował tylko łuk o przeciwnym zwrocie).

Ścieżka powiększająca to ścieżka w sieci residualnej prowadząca od źródła do ujścia. Najmniejsza spośród wag łuków należących do ścieżki powiekszającej jest określana jako jej przepustowość residualna. Jest to wartość, o którą można zwiększyć przepływ w sieci przepływowej.

Powiększenie przepływu w sieci o ścieżkę powiększającą można opisać następująco. Dla każdego łuku należącego do ścieżki powiększającej:

  • Jeśli taki łuk istnieje w sieci przepływowej, zwiększ jego przepływ o przepustowość residualną ścieżki powiększającej.
  • Jeśli taki łuk nie istnieje w sieci przepływowej, zmniejsz przepływ w łuku o przeciwnym zwrocie o przepustowość residualną ścieżki powiększającej.

Złożoność obliczeniowa

Ze względu na to, że metoda Forda-Fulkersona jest algorytmem bardzo ogólnym, złożoność obliczeniowa zależy od konkretnej implementacji. Jeśli założymy, że przepływy w łukach są liczbami naturalnymi, to możemy oszacować górne ograniczenie tej złożoności. W każdej iteracji algorytmu powiększymy przepływ o co najmniej 1, zatem liczba wykonań głównej pętli algorytmu będzie mniejsza bądź równa od maksymalnego przepływu (oznaczmy go f). W trakcie wyznaczania ścieżki powiększającej i zwiększania przepływu musimy przejrzeć w najgorszym wypadku wszystkie krawędzie (oznaczmy ich liczbę jako e). Kres górny złożoności czasowej jest zatem rzędu O(fe).

Bibliografia

  • T.H. Cormen, Ch.E. Leiserson, R.L. Rivest, C. Stein, Wprowadzenie do algorytmów, Wydawnictwo Naukowe PWN, Warszawa, 2012, ISBN 9788301169114.
  • A. Debudaj-Grabysz, S. Deorowicz, J. Widuch, Algorytmy i struktury danych. Wybór zaawansowanych metod, Wydawnictwo Politechniki Śląskiej, Gliwice, 2012, ISBN 9788373359383.
Ocena: 0 Tak Nie
Liczba głosów: 0.

Dodano: 12 grudnia 2017 15:56, ostatnia edycja: 24 kwietnia 2020 20:19.

REKLAMA

Zobacz też

Ten artykuł opisuje algorytm rozwiązujący problem wydawania reszty oparty na programowaniu dynamicznym. Algorytm ten daje gwarancję znalezienia rozwiązania optymalnego.

Istnieje również pewna modyfikacja tego algorytmu, która została opisana w osobnym artykule.

→ Czytaj całość

Rekurencja (inaczej rekursja) – odwołanie się funkcji lub definicji do samej siebie. Mówiąc inaczej, podejście rekurencyjne polega na tym, że rozwiązanie problemu wyraża się za pomocą rozwiązania tego samego problemu dla mniejszych danych wejściowych. Stosowanie rekurencji jest charakterystyczne dla algorytmów projektowanych metodą dziel i zwyciężaj.

Typowym problemem, dla którego można zastosować rekurencję, jest obliczanie silni. Przypomnijmy, że silnia z n jest zdefiniowana jako n!=1×2×…×n. Funkcja ta może być równoważnie zapisana jako:

n!=(n−1)!×n, dla n>0,
n!=1, dla n=0.

W powyższym przykładzie górny wiersz jest ogólnym równaniem rekurencji, zaś dolny wiersz jest wartością brzegową. W języku C++ powyższa funkcja byłaby zapisana w poniższy sposób.

int silnia(int n)
{
    if (n > 0)
    {
        return n * silnia(n-1);
    }
    else
    {
        return 1;
    }
};

Przekształcenie postaci rekurencyjnej funkcji do postaci zwartej (tzn. takiej, która nie zawiera odwołania do samej siebie) jest określane jako rozwiązanie rekurencji. Metody rozwiązywania rekurencji są dostępne między innymi w książkach podanych w bibliografii.

Algorytmy stosujące rekurencję są zazwyczaj proste w implementacji. Jednocześnie wiążą się one z pewnymi problemami. Przy podejściu rekurencyjnym ta sama funkcja jest wywoływana wielokrotnie, co zużywa pamięć operacyjną (w skrajnych przypadkach może to spowodować przepełnienie stosu).

→ Czytaj całość

Algorytm Johnsona – algorytm służący do wyznaczania najkrótszych ścieżek pomiędzy każdą parą wierzchołków w grafie. Algorytm wykorzystuje algorytm Dijkstry i algorytm Bellmana-Forda. Dopuszcza krawędzie o ujemnych wagach, o ile nie tworzą ujemnych cykli.

Złożoność czasowa algorytmu (jeśli algorytm Dijkstry zostanie zaimplementowany z wykorzystaniem kopca Fibonacciego) to O(n2log n + en), gdzie n jest liczbą wierzchołków, a e jest liczbą krawędzi. Dla grafów rzadkich (ze stosunkowo małą liczbą krawędzi) jest to złożoność lepsza, niż złożoność algorytmu Floyda-Warshalla.

→ Czytaj całość
Polityka prywatnościKontakt