Algorytmy
49,00 zł
Nowoczesne receptury w Javie. Proste rozwiązania trudnych problemów
−30%38,43 zł
Wprowadzenie do obliczeń równoległych
−16%49,45 zł
Informatyka Europejczyka. Podręcznik dla szkoły podstawowej. Klasa 8
9,90 zł
Python. Uczenie maszynowe
69,00 zł
TDD. Techniki programowania sterowanego testami
59,00 zł

Sortowanie przez scalanie

Sortowanie przez scalanie Przykład sortowania przez scalanie
Scalanie Operacja scalania

Sortowanie przez scalanie – rekurencyjny algorytm sortowania wykorzystujący metodę dziel i zwyciężaj.

Działanie algorytmu

Sortowanie przez scalanie przebiega następująco:

  • Jeśli rozmiar tablicy do posortowania wynosi 1, nic nie rób (tablica jest już posortowana).
  • W przeciwnym razie:
    • Posortuj pierwszą połowę tablicy.
    • Posortuj drugą połowę tablicy.
    • Scal otrzymane wyniki.

Operacja scalania polega na porównywaniu pierwszych elementów posortowanych podtablic i przenoszeniu mniejszego z nich (lub większego, jeśli sortujemy malejąco) do nowej tablicy. Jeśli w jednej z podtablic nie ma już elementów, trzeba kolejno przenosić do tablicy z wynikami kolejne elementy drugiej.

Złożoność obliczeniowa

Głębokość drzewa wywołań funkcji dla tablicy o rozmiarze n wynosi log2n (zaokrąglone w górę). Złożoność operacji scalania tablic jest liniowa. Złożoność czasowa algorytmu jest zatem O(nlogn).

W pamięci operacyjnej potrzebne jest miejsce na obsługę kolejnych wywołań funkcji oraz na tymczasowe tablice potrzebne przy scalaniu. Złożoność pamięciowa algorytmu jest rzędu O(n).

Ocena algorytmu

Algorytm ma mniejszą złożoność czasową niż proste algorytmy, takie jak np. sortowanie bąbelkowe czy sortowanie przez wstawianie. W zamian za to ma jednak gorszą złożoność pamięciową.

Dodatkową zaletą sortowania przez scalanie jest to, że algorytm ten można zrównoleglić. Poszczególne podtablice można sortować niezależnie od siebie, zatem sortowania te można wykonywać w osobnych wątkach.

Przykładowa implementacja w języku C++

Przykładowy kod źródłowy w języku C++ jest umieszczony poniżej. Kod ten realizuje sortowanie rosnące.

void sortowanie_przez_scalanie(int* tab, int n)
{
    if (n > 1) 
    {
        int n1 = n/2;
        int n2 = n - n1;
        
        // Wywolanie rekurencyjne
        sortowanie_przez_scalanie(tab, n1);  
        sortowanie_przez_scalanie(&tab[n1], n2);
    
        //Przepisanie wynikow do tymczasowych tablic
        int i;
        
        int* tab1 = new int[n1];
        int* tab2 = new int[n2];

        for (i = 0; i < n1; ++i)
        {
            tab1[i] = tab[i];
        } 
        for (i = n1; i < n; ++i)
        {
            tab2[i-n1] = tab[i];
        }
    
        // Scalenie
        int in1, in2;
        in1 = in2 = 0;
        
        for (i = 0; i < n; ++i) 
        {
            if ((in1 < n1) && (tab1[in1] <= tab2[in2]))
            {
                tab[i] = tab1[in1];
                ++in1;
            }
            else
            {
                tab[i] = tab2[in2];
                ++in2;
            }                     
        }
    
        delete[] tab1;
        delete[] tab2;
    }
}

Bibliografia

  1. T.H. Cormen, Ch.E. Leiserson, R.L. Rivest, C. Stein, Wprowadzenie do algorytmów, Wydawnictwo Naukowe PWN, Warszawa, 2012.
Ocena: +1 Tak Nie
Liczba głosów: 1.

Dodano: 29 czerwca 2017 14:33, ostatnia edycja: 29 czerwca 2017 18:18.

Zobacz też

Przeszukiwanie wszerz (ang. breadth-first search, w skrócie BFS) – jeden z dwóch podstawowych algorytmów przeszukiwania grafu. Polega na przeglądaniu wierzchołków grafu według ich odległości od wierzchołka źródłowego (wyrażanej w liczbie krawędzi).

→ Czytaj całość

2-opt, algorytm 2-optymalny – algorytm lokalnej optymalizacji wykorzystywany przy rozwiązywaniu problemu komiwojażera. Jest to szczególny przypadek algorytmu k-optymalnego.

Algorytm 2-opt nie służy do wyznaczania trasy, a jedynie do ulepszania jej. Samą trasę można wyznaczyć np. za pomocą algorytmu najbliższego sąsiada. Algorytm może być wykorzystany do ulepszenia algorytmu genetycznego – w ten sposób powstanie algorytm memetyczny.

→ Czytaj całość

Programowanie dynamiczne – technika projektowania algorytmów polegająca na rozwiązywaniu podproblemów i zapamiętywaniu ich wyników. W technice tej, podobnie jak w metodzie dziel i zwyciężaj, problem dzielony jest na mniejsze podproblemy. Wyniki rozwiązywania podproblemów są jednak zapisywane w tabeli, dzięki czemu w przypadku natrafienia na ten sam podproblem nie trzeba go ponownie rozwiązywać.

Wykorzystując programowanie dynamiczne można zastosować metodę zstępującą z zapamiętywaniem lub metodę wstępującą.

  • Metoda zstępująca z zapamiętywaniem polega na rekurencyjnym wywoływaniu funkcji z zapamiętywaniem wyników. Metoda ta jest podobna do metody dziel i zwyciężaj – różni się od niej tym, że jeśli rozwiązanie danego problemu jest już w tabeli z wynikami, to należy je po prostu stamtąd odczytać.
  • Metoda wstępująca polega na rozwiązywaniu wszystkich możliwych podproblemów, zaczynając od tych o najmniejszym rozmiarze. Wówczas w momencie rozwiązywania podproblemu na pewno są już dostępne rozwiązania jego podproblemów. W tym podejściu nie zużywa się pamięci na rekurencyjne wywołania funkcji. Może się jednak okazać, że część podproblemów została rozwiązana nadmiarowo (nie były one potrzebne do rozwiązania głównego problemu).
→ Czytaj całość
Polityka prywatnościKontakt