2-opt

2-opt przykład (1) Przykład wykonania algorytmu

2-opt, algorytm 2-optymalny – algorytm lokalnej optymalizacji wykorzystywany przy rozwiązywaniu problemu komiwojażera. Jest to szczególny przypadek algorytmu k-optymalnego.

Algorytm 2-opt nie służy do wyznaczania trasy, a jedynie do ulepszania jej. Samą trasę można wyznaczyć np. za pomocą algorytmu najbliższego sąsiada. Algorytm może być wykorzystany do ulepszenia algorytmu genetycznego – w ten sposób powstanie algorytm memetyczny.

Działanie algorytmu

Algorytm 2-opt polega na usunięciu z cyklu dwóch krawędzi i zastąpieniu ich innymi krawędziami tak, aby utworzyć inny cykl. Czynność jest powtarzana dla każdej pary krawędzi, z wyjątkiem krawędzi sąsiadujących ze sobą – ich modyfikacja nie spowodowałaby żadnych zmian. Za każdym razem modyfikujemy cykl początkowy (nie rozwiązanie z poprzedniego kroku). Po sprawdzeniu wszystkich par krawędzi sprawdzamy, która modyfikacja najbardziej skróciła trasę. Jeśli żadna modyfikacja nie poprawiła trasy, zwracamy cykl początkowy (nie zmieniamy nic).

Algorytm można wykonywać kilkakrotnie, aż do momentu, w którym żadna modyfikacja nie spowoduje skrócenia trasy. W ten sposób osiągnięte zostanie minimum lokalne.

Złożoność obliczeniowa

W trakcie jednego przebiegu algorytmu trzeba przeanalizować n*(n-3)/2 par krawędzi. Złożoność czasowa (jednej iteracji) wynosi więc O(n2).

Bibliografia

Ocena: 0 Tak Nie
Liczba głosów: 0.

Dodano: 3 czerwca 2017 15:05, ostatnia edycja: 30 stycznia 2019 15:48.

REKLAMA

Zobacz też

Programowanie dynamiczne – technika projektowania algorytmów polegająca na rozwiązywaniu podproblemów i zapamiętywaniu ich wyników. W technice tej, podobnie jak w metodzie dziel i zwyciężaj, problem dzielony jest na mniejsze podproblemy. Wyniki rozwiązywania podproblemów są jednak zapisywane w tabeli, dzięki czemu w przypadku natrafienia na ten sam podproblem nie trzeba go ponownie rozwiązywać.

Wykorzystując programowanie dynamiczne można zastosować metodę zstępującą z zapamiętywaniem lub metodę wstępującą.

  • Metoda zstępująca z zapamiętywaniem polega na rekurencyjnym wywoływaniu funkcji z zapamiętywaniem wyników. Metoda ta jest podobna do metody dziel i zwyciężaj – różni się od niej tym, że jeśli rozwiązanie danego problemu jest już w tabeli z wynikami, to należy je po prostu stamtąd odczytać.
  • Metoda wstępująca polega na rozwiązywaniu wszystkich możliwych podproblemów, zaczynając od tych o najmniejszym rozmiarze. Wówczas w momencie rozwiązywania podproblemu na pewno są już dostępne rozwiązania jego podproblemów. W tym podejściu nie zużywa się pamięci na rekurencyjne wywołania funkcji. Może się jednak okazać, że część podproblemów została rozwiązana nadmiarowo (nie były one potrzebne do rozwiązania głównego problemu).
→ Czytaj całość

Drzewo decyzyjne – metoda graficzna wspierająca podejmowanie decyzji, jak również model stosowany w uczeniu maszynowym do klasyfikacji lub regresji.

Podejmowanie decyzji z wykorzystaniem drzewa decyzyjnego odbywa się poprzez odpowiadanie na kolejne pytania. Pojedyncze pytanie musi być proste i dotyczyć jednego konkretnego atrybutu. Pytania ułożone są w strukturę hierarchiczną – wybór następnego pytania (lub końcowej decyzji) zależy od odpowiedzi udzielonej na poprzednie.

Proste drzewo decyzyjne może być w pełni zaprojektowane już przy tworzeniu programu i zaimplementowane w kodzie np. za pomocą instrukcji warunkowych. W uczeniu maszynowym drzewo jest generowane automatycznie na podstawie próbek ze zbioru uczącego.

→ Czytaj całość

Problem komiwojażera (ang. travelling salesman problem, w skrócie TSP) – problem obliczeniowy polegający na poszukiwaniu w grafie takiego cyklu, który zawiera wszystkie wierzchołki (każdy dokładnie raz) i ma jak najmniejszy koszt. Bardziej formalnie, problem komiwojażera polega na poszukiwaniu w grafie cyklu Hammiltona o najmniejszej wadze.

Problem ma liczne zastosowania w życiu codziennym. Najlepszym przykładem jest praca kuriera, który musi wyjechać z magazynu, zawieźć przesyłki w różne miejsca i wrócić do magazynu.

Nie jest znany efektywny (tj. działający w czasie co najwyżej wielomianowym) algorytm dający gwarancję znalezienia optymalnego rozwiązania problemu komiwojażera. Problem ten jest bowiem zaliczany do klasy problemów NP-trudnych. W wersji decyzyjnej (czy istnieje cykl o długości mniejszej od x) problem jest zaliczany do klasy problemów NP-zupełnych. W grafie pełnym mającym n wierzchołków liczba możliwych cykli Hammiltona wynosi aż (n-1)!/2. W praktyce sprawdzenie wszystkich możliwości jest zatem wykonalne tylko dla niewielkiej liczby wierzchołków.

→ Czytaj całość
Polityka prywatnościKontakt