Algorytmy genetyczne

Tutorial
Na ten temat mamy również tutorial „Problem komiwojażera, algorytm genetyczny”, który ilustruje działanie algorytmu krok po kroku. Zapraszamy do zapoznania się z nim!
Algorytm genetyczny, schemat blokowy (1) Schemat blokowy algorytmu genetycznego
REKLAMA

Prosto o AI. Jak działa i myśli sztuczna inteligencja?
−35%29,18 zł
Algorytmy, struktury danych i techniki programowania. Wydanie VI
−35%38,35 zł

Algorytm genetyczny – jedna z metaheurystyk inspirowanych biologiczną ewolucją.

Pojęcie algorytmu genetycznego nie jest powiązane z żadnym konkretnym problemem obliczeniowym, algorytm ten może być wykorzystywany do rozwiązywania różnych problemów. Algorytm genetyczny nie próbuje rozwiązywać problemu w sposób analityczny, ale próbuje uzyskać jak najlepsze rozwiązania poprzez wybieranie jak najlepszych cech rozwiązań z określonej puli. Implementując algorytm genetyczny należy przedstawić potencjalne rozwiązanie problemu w postaci jakiejś struktury danych, a następnie zdefiniować operacje krzyżowania, mutacji i selekcji. Zakładamy, że z każdym kolejnym pokoleniem rozwiązania występujące w populacji będą coraz lepsze.

Operacje

Utworzenie populacji początkowej

Na początku działania algorytmu trzeba utworzyć populację początkową. Najczęściej polega to na utworzeniu pewnej liczby zupełnie losowych rozwiązań (określanych jako osobniki).

Sposób kodowania rozwiązania (osobnika) nie jest określony, zależy on od konkretnego problemu do rozwiązania. Klasycznym podejściem jest kodowanie binarne, czyli przedstawienie osobnika za pomocą ciągu zer i jedynek. Wówczas wartość 1 może oznaczać obecność jakiegoś elementu w rozwiązaniu, a 0 jej brak. Innym popularnym rozwiązaniem jest ciąg liczb naturalnych. Takie rozwiązanie znajduje zastosowanie między innymi w przypadku problemu komiwojażera, gdzie kolejność liczb oznacza kolejność odwiedzania punktów na trasie.

Ocena jakości

Algorytm genetyczny musi mieć funkcję oceny jakości rozwiązania pozwalającą określić, które rozwiązanie jest lepsze. Funkcja ta jest określana jako funkcja oceny lub funkcja przystosowania.

Krzyżowanie

Operacja krzyżowania polega na utworzeniu potomka (lub potomków) na podstawie dwóch wybranych elementów populacji. Potomek zawiera w sobie część cech jednego rodzica, a część drugiego. W przypadku kodowania binarnego najprostszym rozwiązaniem jest skopiowanie części ciągu z jednogo rodzica, a pozostałej części z drugiego. Jeśli osobniki zakodowane są za pomocą ciągu liczb, można stosować następującą metodę krzyżowania: część rozwiązania jest kopiowana z jednego rodzica, a następnie brakujące liczby są wstawiane w takiej kolejności, w jakiej wystąpowały w drugim rodzicu.

Mutacja

Operacja mutacji polega na dokonaniu losowej zmiany w którymś z osobników. Operacja ta powinna być stosowana stosunkowo rzadko (mutacji powinno podlegać znacznie mniej osobników, niż krzyżowaniu). W kodowaniu binarnym mutacją możę być zamiana losowego bitu na przeciwny, a w kodowaniu za pomocą ciągu liczb np. zamiana miejscami dwóch elementów.

Selekcja

Celem selekcji jest usunięcie z populacji rozwiązań słabych, a pozostawienie dobrych, które będą podlegały krzyżowaniu. W trywialnym przypadku może być zrealizowane po prostu przez pozostawienie określonej liczby najlepszych rozwiązań (osobników) i usunięcie pozostałych. Zazwyczaj selekcja jest bardziej złożona – prawdopodobieństwo zostania rodzicem zależy od oceny jakości osobnika, jednak nawet w przypadku słabych osobników nie jest ono zerowe.

Warunek stopu

Algorytm musi mieć zdefiniowany moment, w którym ma zakończyć swoje działanie. Najprostszym rozwiązaniem jest określenie liczby iteracji (pokoleń). Po zakończeniu działania algorytmu najlepszy osobnik z populacji jest zwracany jako wynik. Warunkiem stopu może być również ocena jakości najlepszego osobnika w populacji.

Zobacz też

Bibliografia

  • A. Debudaj-Grabysz, S. Deorowicz, J. Widuch, Algorytmy i struktury danych. Wybór zaawansowanych metod, Wydawnictwo Politechniki Śląskiej, Gliwice, 2012, ISBN 9788373359383.
Ocena: 0 Tak Nie
Liczba głosów: 4.

Dodano: 1 maja 2017 18:57, ostatnia edycja: 7 czerwca 2023 18:41.

REKLAMA

Zobacz też

Drzewo decyzyjne – metoda graficzna wspierająca podejmowanie decyzji, jak również model stosowany w uczeniu maszynowym do klasyfikacji lub regresji.

Podejmowanie decyzji z wykorzystaniem drzewa decyzyjnego odbywa się poprzez odpowiadanie na kolejne pytania. Pojedyncze pytanie musi być proste i dotyczyć jednego konkretnego atrybutu. Pytania ułożone są w strukturę hierarchiczną – wybór następnego pytania (lub końcowej decyzji) zależy od odpowiedzi udzielonej na poprzednie.

Proste drzewo decyzyjne może być w pełni zaprojektowane już przy tworzeniu programu i zaimplementowane w kodzie np. za pomocą instrukcji warunkowych. W uczeniu maszynowym drzewo jest generowane automatycznie na podstawie próbek ze zbioru uczącego.

→ Czytaj całość

Kolejka (ang. Queue) – struktura danych, w której elementy pobierane są z początku, a dodawane na końcu. Z kolejki można zatem pobrać tylko ten element, który był dodany najwcześniej. Kolejka bywa określana również jako kolejka FIFO (z ang. First In, First Out), w odróżnieniu od kolejki LIFO, czyli stosu.

→ Czytaj całość

Minimalne drzewo rozpinające (ang. minimum spanning tree, w skrócie MST), inaczej drzewo rozpinające o minimalnej wadze – drzewo łączące wszystkie wierzchołki pewnego grafu spójnego mające najmniejszą możliwą sumę wag krawędzi.

Jeśli graf ma v wierzchołków, to jego drzewo rozpinające zawsze będzie miało v-1 krawędzi. Jeśli ten graf ma e krawędzi, aby utworzyć drzewo rozpinające, trzeba usunąć z grafu e-v+1 krawędzi. Liczba ta jest określana jako liczba cyklomatryczna.

→ Czytaj całość
Polityka prywatnościKontakt