PHP 7. Algorytmy i struktury danych
59,00 zł
Systemy operacyjne. Architektura, funkcjonowanie i projektowanie. Wydanie IX
−30%90,30 zł
Thinking in Java. Edycja polska. Wydanie IV
149,00 zł
Czysta architektura. Struktura i design oprogramowania. Przewodnik dla profesjonalistów
67,00 zł
Kwalifikacja EE.08. Montaż i eksploatacja systemów komputerowych, urządzeń peryferyjnych i sieci. Część 3. Projektowanie i wykonywanie lokalnych sieci komputerowych. Podręcznik do nauki zawodu technik informatyk
37,95 zł
Linux. Komendy i polecenia. Wydanie V
24,90 zł

Kategoria: Techniki projektowania algorytmów

Podkategorie:Artykuły w tej kategorii:
REKLAMA

Zobacz też

Algorytm Kruskala – algorytm wyznaczający minimalne drzewo rozpinające. Algorytm ten wykorzystuje strategię zachłanną.

→ Czytaj całość

Algorytm Floyda-Warshalla – algorytm służący do wyznaczania najkrótszych ścieżek pomiędzy każdą parą wierzchołków w grafie. Jest to algorytm oparty na programowaniu dynamicznym. Algorytm ma złożoność czasową O(n3) i złożoność pamięciową O(n2), gdzie n jest liczbą wierzchołków.

Algorytm dopuszcza krawędzie o ujemnych wagach, o ile nie tworzą ujemnych cykli. Algorytm może być również wykorzystywany do wyszukiwania ujemnych cykli w grafie.

→ Czytaj całość

Problem komiwojażera (ang. travelling salesman problem, w skrócie TSP) – problem obliczeniowy polegający na poszukiwaniu w grafie takiego cyklu, który zawiera wszystkie wierzchołki (każdy dokładnie raz) i ma jak najmniejszy koszt. Bardziej formalnie, problem komiwojażera polega na poszukiwaniu w grafie cyklu Hammiltona o najmniejszej wadze.

Problem ma liczne zastosowania w życiu codziennym. Najlepszym przykładem jest praca kuriera, który musi wyjechać z magazynu, zawieźć przesyłki w różne miejsca i wrócić do magazynu.

Nie jest znany efektywny (tj. działający w czasie co najwyżej wielomianowym) algorytm dający gwarancję znalezienia optymalnego rozwiązania problemu komiwojażera. Problem ten jest bowiem zaliczany do klasy problemów NP-trudnych. W wersji decyzyjnej (czy istnieje cykl o długości mniejszej od x) problem jest zaliczany do klasy problemów NP-zupełnych. W grafie pełnym mającym n wierzchołków liczba możliwych cykli Hammiltona wynosi aż (n-1)!/2. W praktyce sprawdzenie wszystkich możliwości jest zatem wykonalne tylko dla niewielkiej liczby wierzchołków.

→ Czytaj całość
Polityka prywatnościKontakt