Symulowane wyżarzanie

Tutorial
Na ten temat mamy również tutorial „Symulowane wyżarzanie”, który ilustruje działanie algorytmu krok po kroku. Zapraszamy do zapoznania się z nim!
REKLAMA

Kwalifikacja INF.03. Tworzenie i administrowanie stronami i aplikacjami internetowymi oraz bazami danych. Część 1. Projektowanie stron internetowych. Podręcznik do nauki zawodu technik informatyk i technik programista
−14%39,95 zł
Algorytmy. Ćwiczenia
34,90 zł

Symulowane wyżarzanie – jedna z technik projektowania algorytmów heurystycznych (metaheurystyka). Cechą charakterystyczną tej metody jest występowanie parametru sterującego zwanego temperaturą, który maleje w trakcie wykonywania algorytmu. Im wyższą wartość ma ten parametr, tym bardziej chaotyczne mogą być zmiany. Podejście to jest inspirowane zjawiskami obserwowanymi w metalurgii – im większa temperatura metalu, tym bardziej jest on plastyczny.

Jest to metoda iteracyjna: najpierw losowane jest pewne rozwiązanie, a następnie jest ono w kolejnych krokach modyfikowane. Jeśli w danym kroku uzyskamy rozwiązanie lepsze, wybieramy je zawsze. Istotną cechą symulowanego wyżarzania jest jednak to, że z pewnym prawdopodobieństwem może być również zaakceptowane rozwiązanie gorsze (ma to na celu umożliwienie wyjście z maksimum lokalnego).

Prawdopodobieństwo przyjęcia gorszego rozwiązania wyrażone jest wzorem e(f(X)−f(X'))/T (rozkład Boltzmanna), gdzie X jest poprzednim rozwiązaniem, X' nowym rozwiązaniem, a f funkcją oceny jakości – im wyższa wartość f(X), tym lepsze rozwiązanie. Ze wzoru można zauważyć, że prawdopodobieństwo przyjęcia gorszego rozwiązania spada wraz ze spadkiem temperatury i wzrostem różnicy jakości obu rozwiązań.

Opis algorytmu

Przez rozpoczęciem wykonywania algorytmu należy ustalić:

  • Początkową wartość temperatury T.
  • Sposób obniżania temperatury – często stosowanym rozwiązaniem jest mnożenie aktualnej temperatury przez pewien współczynnik, zazwyczaj mieszczący się w przedziale [0,8; 0,99].
  • Liczbę prób przeprowadzanych w ramach jednej epoki (z tą samą temperaturą).
  • Sposób wyboru nowego rozwiązania w ramach pojedynczej próby. Nowe rozwiązanie powinno znajdować się w pobliżu aktualnego. Przy wyznaczeniu nowego rozwiązania można wziąć pod uwagę aktualną temperaturę – im wyższa, tym bardziej nowe i aktualne rozwiązanie mogą się od siebie różnić.
  • Warunek stopu – może to być np. osiągnięcie określonej liczby epok lub odpowiednio mała zmiana rozwiązania w trakcie ostatnio wykonanych epok.

Działanie algorytmu można opisać następująco:

  1. Wylosuj rozwiązanie początkowe X.
  2. Wybierz losowe rozwiązanie X' znajdujące się w pobliżu X.
  3. Jeśli nowe rozwiązanie jest lepsze, przyjmij je (X=X'). W przeciwnym razie, wyznacz prawdopodobieństwo przyjęcia nowego rozwiązania używając wzoru e(f(X)−f(X'))/T. Następnie wylosuj liczbę z przedziału [0,1] i jeśli jest ona mniejsza od obliczonego prawdopodobieństwa, przyjmij nowe rozwiązanie (pomimo tego, że jest gorsze).
  4. Jeśli nie wykonano jeszcze odpowiedniej liczby prób w obrębie danej epoki, wróć do punktu 2.
  5. Zmniejsz temperaturę.
  6. Jeśli nie osiągnięto jeszcze warunku stopu, wróć do punktu 2.

Dodatkowe uwagi

Symulowane wyżarzanie jest metaheurystyką, zatem nie jest to szczegółowo opisany algorytm, a jedynie ogólna koncepcja. W zależności od problemu do rozwiązania, poszczególne elementy algorytmu mogą być zdefiniowane różnie. Przykładowo, przy rozwiązywaniu problemu komiwojażera pobliskim rozwiązaniem może być zamiana miejscami dwóch węzłów. Odległość między aktualnym a nowym rozwiązaniem w takim przypadku nie musi zależeć od temperatury.

Bibliografia

  • A. Debudaj-Grabysz, S. Deorowicz, J. Widuch, Algorytmy i struktury danych. Wybór zaawansowanych metod, Wydawnictwo Politechniki Śląskiej, Gliwice, 2012, ISBN 9788373359383.
Ocena: 0 Tak Nie
Liczba głosów: 0.

Dodano: 20 kwietnia 2020 19:53, ostatnia edycja: 6 maja 2020 19:25.

REKLAMA

Zobacz też

Wyznaczanie najkrótszej ścieżki – zagadnienie polegające na wyszkaniu w grafie takiej ścieżki łączącej dwa wierzchołki, której suma wag krawędzi jest jak najmniejsza.

W przypadku pesymistycznym do wyznaczenia optymalnej ścieżki z wierzchołka A do wierzchołka B konieczne jest wyznaczenie najkrótszych ścieżek z wierzchołka A do wszystkich pozostałych wierzchołków w grafie. Zagadnienie takie jest określane jako poszukiwanie najkrótszych ścieżek z jednego źródła. Do rozwiązywania tego zagadnienia można wykorzystać następujące algorytmy:

Nieco innym zagadnieniem jest poszukiwanie najkrótszych ścieżek pomiędzy każdą parą wierzchołków. W tym celu można wykorzystać algorytmy wymienione powyżej (wykonując je wielokrotnie, za każdym razem przyjmując inny wierzchołek źródłowy) lub algorytmy poszukujące od razu wszystkich ścieżek, takie jak:

Aby znalezienie najkrótszej ścieżki było możliwe, graf nie może zawierać ujemnych cykli osiągalnych z wierzchołka źródłowego. Jeśli taki cykl istnieje, to poruszając się nim „w kółko” cały czas zmniejszamy długość ścieżki. Dopuszczalne jest natomiast występowanie krawędzi o ujemnej wadze, choć nie wszystkie algorytmy dopuszczają ten przypadek.

Jeśli poszukujemy ścieżek o najmniejszej liczbie krawędzi (np. wtedy, gdy wszystkie krawędzie mają taką samą, dodatnią wagę), to zamiast powyższych algorytmów możemy skorzystać z prostego przeszukiwania grafu wszerz.

→ Czytaj całość

Wyznaczanie maksymalnego przepływu – problem obliczeniowy polegający na wyznaczeniu maksymalnego przepływu w sieci przepływowej.

Sieć przepływowa jest skierowanym grafem prostym. Każdy łuk (krawędź skierowana w grafie) ma swoją nieujemną wagę, która oznacza maksymalny dopuszczalny przepływ w tym łuku. Na potrzeby tego artykułu nazwijmy rzeczy przepływające przez sieć danymi. Jeden z wierzchołków sieci jest źródłem, z którego wypływają przesyłane dane. Inny z wierzchołków to ujście, do którego te dane wpływają. Zakłada się ponadto, że dla każdego z pozostałych wierzchołków istnieje ścieżka ze źródła do ujścia przechodząca przez ten wierzchołek.

Przepływem w sieci nazywamy przyporządkowanie każdemu łukowi pewnej wartości, która oznacza liczbę danych aktualnie przesyłanych przez ten łuk. Wartości te muszą spełniać następujące warunki:

  • Wartość przyporządkowana krawędzi musi być mniejsza lub równa jej wadze (warunek przepustowości).
  • Do każdego wierzchołka (poza źródłem i ujściem) musi wpływać tyle samo danych, ile z niego wypływa (warunek zachowania przepływu).

Omawiany problem polega na dobraniu takiego przepływu, aby liczba danych wypływających ze źródła (i zarazem wpływających do ujścia) była jak największa.

→ Czytaj całość

Metoda przyrostowa – technika projektowania algorytmów polegająca na dodawaniu do rozwiązania kolejnych elementów z danych wejściowych. Przykładem algorytmu opartego na tej metodzie jest sortowanie przez wstawianie, gdzie kolejne elementy są wstawiane do posortowanej części tablicy.

Jest to metoda prosta, jednak sprawdza się tylko dla niektórych problemów obliczeniowych.

→ Czytaj całość
Polityka prywatnościKontakt