Algorytmy. Ćwiczenia
34,90 zł
Projektowanie systemów rozproszonych. Wzorce i paradygmaty dla skalowalnych, niezawodnych usług
−30%27,93 zł
PHP 7. Algorytmy i struktury danych
59,00 zł
Java. Kompendium programisty. Wydanie X
179,00 zł
Opus magnum C++11. Programowanie w języku C++ (komplet)
149,00 zł
Uczenie maszynowe z użyciem Scikit-Learn i TensorFlow
89,00 zł

Polityka prywatności

W trakcie przeglądania serwisie po stronie serwera gromadzone są pewne bezosobowe dane, które są wykorzystywane w celach statystycznych. W momencie ocenienia artykułu w bazie danych zapisywany jest adres IP w celu zapobiegania wielokrotnemu ocenianiu.

Wyszukiwarka zamieszczona w serwisie jest zewnętrzną wyszukiwarką Google. Korzystanie z niej nie jest objęte niniejszą polityką prywatności.

W serwisie zamieszczone są materiały reklamowe firm Helion oraz Ceneo. Kliknięcie w te materiały przenosi użytkownika do innego serwisu, skutkuje ono również zapisaniem na komputerze użytkownika pliku cookie (ciasteczka) informującego, skąd nastąpiło przejście do zewnętrznego serwisu. Odbywa się to jednak już poza niniejszym serwisem, gdzie nie obowiązuje ta polityka prywatności.

REKLAMA

Zobacz też

2-opt, algorytm 2-optymalny – algorytm lokalnej optymalizacji wykorzystywany przy rozwiązywaniu problemu komiwojażera. Jest to szczególny przypadek algorytmu k-optymalnego.

Algorytm 2-opt nie służy do wyznaczania trasy, a jedynie do ulepszania jej. Samą trasę można wyznaczyć np. za pomocą algorytmu najbliższego sąsiada. Algorytm może być wykorzystany do ulepszenia algorytmu genetycznego – w ten sposób powstanie algorytm memetyczny.

→ Czytaj całość

Algorytm Johnsona – algorytm służący do wyznaczania najkrótszych ścieżek pomiędzy każdą parą wierzchołków w grafie. Algorytm wykorzystuje algorytm Dijkstry i algorytm Bellmana-Forda. Dopuszcza krawędzie o ujemnych wagach, o ile nie tworzą ujemnych cykli.

Złożoność czasowa algorytmu (jeśli algorytm Dijkstry zostanie zaimplementowany z wykorzystaniem kopca Fibonacciego) to O(n2log n + en), gdzie n jest liczbą wierzchołków, a e jest liczbą krawędzi. Dla grafów rzadkich (ze stosunkowo małą liczbą krawędzi) jest to złożoność lepsza, niż złożoność algorytmu Floyda-Warshalla.

→ Czytaj całość

Powtarzalny algorytm najbliższego sąsiada (ang. repetitive nearest neighbour algorithm, w skrócie RNN) – algorytm służący do rozwiązywania problemu komiwojażera korzystający z algorytmu najbliższego sąsiada.

Algorytm polega na wielokrotnym wykonaniu algorytmu najbliższego sąsiada w taki sposób, aby każdy wierzchołek raz był wierzchołkiem początkowym. Następnie algorytm zwraca najlepsze spośród otrzymanych rozwiązań.

Dla grafu pełnego algorytm ma złożoność O(n3), gdzie n jest liczbą wierzchołków. W trakcie wykonywania algorytmu RNN n razy zostanie wykonany algorytm najbliższego sąsiada, który ma złożoność czasową O(n2).

Algorytm RNN nie daje gwarancji znalezienia rozwiązania optymalnego. W odróżnieniu od algorytmu najbliższego sąsiada daje jednak gwarancję, że zwróci rozwiązanie co najmniej tak dobre, jak n/2-1 innych rozwiązań (dowód i więcej informacji na ten temat znajduje się w pracy podanej w bibliografii).

→ Czytaj całość
Polityka prywatnościKontakt