C++. Algorytmy i struktury danych
103,95 zł
Projektowanie systemów rozproszonych. Wzorce i paradygmaty dla skalowalnych, niezawodnych usług
−30%27,93 zł
Algorytmy i struktury danych z przykładami w Delphi
80,00 zł
Czysta architektura. Struktura i design oprogramowania. Przewodnik dla profesjonalistów
67,00 zł
Sieci komputerowe. Ujęcie całościowe. Wydanie VII
129,00 zł
Data science od podstaw. Analiza danych w Pythonie
57,00 zł

Kontakt

Kontakt

Wszelkie pytania lub uwagi dotyczące strony można kierować na adres mailowy:

administrator@ency.pl
REKLAMA

Zobacz też

Quicksort, sortowanie szybkie – algorytm sortowania działający w średnim przypadku w czasie liniowo-logarytmicznym. Algorytm jest oparty na metodzie dziel i zwyciężaj. Nie jest to algorytm stabilny ani wykazujący zachowanie naturalne, jednak ze względu na efektywność jest algorytmem bardzo popularnym.

→ Czytaj całość

Ten artykuł opisuje algorytm zachłanny rozwiązujący problem wydawania reszty. Algorytm ten polega na wybieraniu zawsze największej dostępnej monety, tzn. takiej, która nie jest większa od kwoty pozostałej do wydania.

Algorytm nie zawsze znajduje rozwiązanie optymalne. Przykładowo, dla zbioru nominałów {1, 3, 4} i kwoty 6 algorytm użyje najpierw monety o nominale 4 (pozostaje do wydania kwota 2), potem monety o nominale 1 (pozostaje kwota 1) i jeszcze raz monety o nominale 1. Łącznie algorytm użyje więc trzech monet, podczas gdy rozwiązanie optymalne wymaga użycia tylko dwóch (dwie monety o nominale 3).

→ Czytaj całość

Przeszukiwanie w głąb (ang. depth-first search, w skrócie DFS) – jeden z dwóch podstawowych algorytmów przeszukiwania grafu. Polega na przechodzeniu zawsze do kolejnego nieodwiedzonego wierzchołka. Jeśli dany wierzchołek nie ma nieodwiedzonych sąsiadów, wracamy do poprzedniego wierzchołka i sprawdzamy jego sąsiadów. Mówiąc obrazowo, w algorytmie tym wchodzimy tak głęboko, jak to możliwe (przechodzimy dalej, dopóki się da).

Algorytm można zapisać w sposób rekurencyjny. Wywoływana rekurencyjnie procedura działa następująco: oznacz wierzchołek jako odwiedzony, a następnie wywołaj tę procedurę dla każdego sąsiada danego wierzchołka, jeśli nie został on wcześniej odwiedzony. Na początku wywołujemy procedurę dla wierzchołka początkowego.

→ Czytaj całość
Polityka prywatnościKontakt