Algorytm Helda-Karpa

Graf, 4 wierzchołki (1) Graf użyty w przykładzie wykonania algorytmu
REKLAMA Algorytmy. Ćwiczenia
34,90 zł
Jak naprawić sprzęt elektroniczny. Poradnik dla nieelektronika. Wydanie II
−40%29,40 zł
Spring w akcji. Wydanie V
−30%62,30 zł
Opus magnum C++. Misja w nadprzestrzeń C++14/17. Tom 4
−40%29,40 zł

Algorytm Helda-Karpa (czasami określany jako algorytm Bellmana-Helda-Karpa) – algorytm służący do rozwiązywania problemu komiwojażera. Jest to algorytm dokładny oparty na programowaniu dynamicznym. Algorytm ma złożoność czasową O(n22n) i złożoność pamięciową O(n2n). Jest to co prawda złożoność gorsza od wielomianowej, ale algorytm ten jest znacznie lepszy od algorytmu sprawdzającego wszystkie warianty (złożoność czasowa O(n!)).

Działanie algorytmu

Załóżmy, że mamy graf liczący n wierzchołków ponumerowanych 1, 2, …, n. Wierzchołek 1 niech będzie wierzchołkiem początkowym. Jako di,j oznaczmy odległość między wierzchołkami i oraz j (są to dane wejściowe).

Oznaczmy jako D(S, p) optymalną długość ścieżki wychodzącej z punktu 1 i przechodzącej przez wszystkie punkty zbioru S tak, aby zakończyć się w punkcie p (p musi należeć do S). Przykładowo, zapis D({2, 5, 6}, 5) to optymalna długość ścieżki wychodzącej z punktu 1, przechodzącej przez punkty 2 i 6, kończącej się w punkcie 5. Liczbę punktów w zbiorze S oznaczmy jako s.

Wartość D(S, p) wyznaczamy następująco:

  • Jeśli s=1, to D(S, p) = d1,p,
  • Jeśli s>1, to D(S, p) = minx∈(S-{p})( D(S−{p}, x) + dx,p).

Mówiąc obrazowo, musimy za każdym razem ustalać, który punkt powinien być przedostatni na trasie (który punkt ma poprzedzać punkt p).

Na końcu wyznacza się rozwiązanie całego problemu. W tym celu należy znaleźć poprzednika punktu 1 korzystając ze wzoru: minx∈{2, …, n}( D({2, …, n}, x) + dx,1).

Przykład

Dany jest graf zawierający cztery wierzchołki (taki, jak na ilustracji). Odległości między wierzchołkami są następujące:

  • d1,2 = d2,1 = 30
  • d1,3 = d3,1 = 36
  • d1,4 = d4,1 = 40
  • d2,3 = d3,2 = 20
  • d2,4 = d4,2 = 50
  • d3,4 = d4,3 = 67

Na początku wyznaczamy wartości D(S, p) dla jednoelementowych zbiorów S (s=1). Są to przypadki trywialne.

  • D({2}, 2) = d1,2 = 30
  • D({3}, 3) = d1,3 = 36
  • D({4}, 4) = d1,4 = 40

Następnie wyznaczamy wartości D(S, p) dla dwuelementowych zbiorów S (s=2). W nawiasie kwadratowym zapisaliśmy numer przedostatniego węzła na ścieżce (węzła x dla optymalnego rozwiązania podproblemu). W tych przypadkach co prawda wybór jest oczywisty, gdyż zbiór S−{p} jest jednoelementowy, jednak już teraz pilnujmy notacji.

  • D({2, 3}, 2) = min( D({3}, 3) + d3,2 ) = min(36 + 20) = min(56) = 56 [3]
  • D({2, 3}, 3) = min( D({2}, 2) + d2,3 ) = min(30 + 20) = min(50) = 50 [2]
  • D({2, 4}, 2) = min( D({4}, 4) + d4,2 ) = min(40 + 50) = min(90) = 90 [4]
  • D({2, 4}, 4) = min( D({2}, 2) + d2,4 ) = min(30 + 50) = min(80) = 80 [2]
  • D({3, 4}, 3) = min( D({4}, 4) + d4,3 ) = min(40 + 67) = min(80) = 107 [4]
  • D({3, 4}, 4) = min( D({3}, 3) + d3,4 ) = min(36 + 67) = min(80) = 103 [3]

W kolejnych krokach wyznaczamy wartości D(S, p) dla trójelementowych zbiorów S (s=3).

  • D({2, 3, 4}, 2) = min( D({3, 4}, 3) + d3,2, D({3, 4}, 4) + d4,2 ) = min(107 + 20, 103 + 50) = min(127, 153) = 127 [3]
  • D({2, 3, 4}, 3) = min( D({2, 4}, 2) + d2,3, D({2, 4}, 4) + d4,3 ) = min(90 + 20, 80 + 67) = min(110, 147) = 110 [2]
  • D({2, 3, 4}, 4) = min( D({2, 3}, 2) + d2,4, D({2, 3}, 3) + d3,4 ) = min(56 + 50, 50 + 67) = min(106, 117) = 106 [2]

Trójelementowy zbiór S jest dla tego zadania największym z możliwych, gdyż nie licząc wierzchołka początkowego mamy trzy wierzchołki. Możemy więc już teraz wyznaczyć rozwiązanie całego zadania:

  • min( D({2, 3, 4}, 2) + d2,1, D({2, 3, 4}, 3) + d3,1, D({2, 3, 4}, 4) + d4,1,) = min(127 + 30, 110 + 36, 106 + 40) = min(157, 146, 146) = 146 [3]

Znamy już długość optymalnej trasy. Samą trasę możemy odtworzyć wykorzystując indeksy z kwadratowych nawiasów. Trasa to 1–3–2–4–1.

Złożoność obliczeniowa

Obliczmy, ile razy wyznaczana jest wartość D(S, p). Dla s=1 wartość tę wyznacza się n−1 razy. Dla każdego s z przedziału od 2 do n−1 rozważamy wszystkie s-elementowe kombinacje ze zbioru n−1-elementowego, przy czym dla każdej kombinacji rozważamy s wariantów punktu końcowego. Łącznie liczba wyznaczanych wartości D(S, p) wynosi zatem: $$(n-1)+∑↙{s=2}↖{n-1}s{(n-1)!}/{s!(n-1-s)!}$$ Korzystając z własności symbolu Newtona można przekształcić ten wzór do postaci: $$(n-1)2^{n-2}$$ Wartość D(S, p) wyznacza się w czasie liniowym (zakładając, że mamy bezpośredni dostęp do każdej zapamiętanej wartości, co można zapewnić prawidłowym indeksowaniem). Łącznie złożoność czasowa algorytmu wynosi więc O(n22n). Każdą wartość D(S, p) należy zapamiętać, zatem złożoność pamięciowa algorytmu to O(n2n).

Ocena: +2 Tak Nie
Liczba głosów: 2.

Dodano: 7 sierpnia 2017 11:19, ostatnia edycja: 8 listopada 2017 16:03.

REKLAMA

Zobacz też

Przeszukiwanie w głąb (ang. depth-first search, w skrócie DFS) – jeden z dwóch podstawowych algorytmów przeszukiwania grafu. Polega na przechodzeniu zawsze do kolejnego nieodwiedzonego wierzchołka. Jeśli dany wierzchołek nie ma nieodwiedzonych sąsiadów, wracamy do poprzedniego wierzchołka i sprawdzamy jego sąsiadów. Mówiąc obrazowo, w algorytmie tym wchodzimy tak głęboko, jak to możliwe (przechodzimy dalej, dopóki się da).

Algorytm można zapisać w sposób rekurencyjny. Wywoływana rekurencyjnie procedura działa następująco: oznacz wierzchołek jako odwiedzony, a następnie wywołaj tę procedurę dla każdego sąsiada danego wierzchołka, jeśli nie został on wcześniej odwiedzony. Na początku wywołujemy procedurę dla wierzchołka początkowego.

→ Czytaj całość

Metoda z zastosowaniem przepływu blokującego – algorytm wyznaczający maksymalny przepływ w sieci przepływowej. W algorytmie tym przepływ zwiększany jest iteracyjnie, w każdej iteracji wyznaczony przepływ jest powiększany o przepływ blokujący w warstwowej sieci residualnej.

→ Czytaj całość

Metoda Forda-Fulkersona – algorytm służący do wyznaczania maksymalnego przepływu. Jest to algorytm bardzo ogólny, dlatego często nie jest nazywany algorytmem, a metodą. Popularną implementacją tej metody jest algorytm Edmondsa-Karpa. Algorytm można opisać następująco:

  1. Wyznacz sieć residualną (opis sieci residualnej znajduje się w dalszej części artykułu).
  2. Znajdź w sieci residualnej dowolną ścieżkę powiększającą.
  3. Jeśli nie udało się wyznaczyć żadnej ścieżki powiększającej, zakończ działanie algorytmu.
  4. W przeciwnym razie zwiększ przepływ w sieci (w sposób opisany w dalszej części artukułu) i wróć do punktu 1.
→ Czytaj całość
Polityka prywatnościKontakt