Algorytm Helda-Karpa

Graf, 4 wierzchołki (1) Graf użyty w przykładzie wykonania algorytmu
REKLAMA

Git. Od koncepcji do praktyki
−35%25,92 zł
C++. Algorytmy i struktury danych
−35%83,85 zł

Algorytm Helda-Karpa (czasami określany jako algorytm Bellmana-Helda-Karpa) – algorytm służący do rozwiązywania problemu komiwojażera. Jest to algorytm dokładny oparty na programowaniu dynamicznym. Algorytm ma złożoność czasową O(n22n) i złożoność pamięciową O(n2n). Jest to co prawda złożoność gorsza od wielomianowej, ale algorytm ten jest znacznie lepszy od algorytmu sprawdzającego wszystkie warianty (złożoność czasowa O(n!)).

Działanie algorytmu

Załóżmy, że mamy graf liczący n wierzchołków ponumerowanych 1, 2, …, n. Wierzchołek 1 niech będzie wierzchołkiem początkowym. Jako di,j oznaczmy odległość między wierzchołkami i oraz j (są to dane wejściowe).

Oznaczmy jako D(S, p) optymalną długość ścieżki wychodzącej z punktu 1 i przechodzącej przez wszystkie punkty zbioru S tak, aby zakończyć się w punkcie p (p musi należeć do S). Przykładowo, zapis D({2, 5, 6}, 5) to optymalna długość ścieżki wychodzącej z punktu 1, przechodzącej przez punkty 2 i 6, kończącej się w punkcie 5. Liczbę punktów w zbiorze S oznaczmy jako s.

Wartość D(S, p) wyznaczamy następująco:

  • Jeśli s=1, to D(S, p) = d1,p,
  • Jeśli s>1, to D(S, p) = minx∈(S-{p})( D(S−{p}, x) + dx,p).

Mówiąc obrazowo, musimy za każdym razem ustalać, który punkt powinien być przedostatni na trasie (który punkt ma poprzedzać punkt p).

Na końcu wyznacza się rozwiązanie całego problemu. W tym celu należy znaleźć poprzednika punktu 1 korzystając ze wzoru: minx∈{2, …, n}( D({2, …, n}, x) + dx,1).

Przykład

Dany jest graf zawierający cztery wierzchołki (taki, jak na ilustracji). Odległości między wierzchołkami są następujące:

  • d1,2 = d2,1 = 30
  • d1,3 = d3,1 = 36
  • d1,4 = d4,1 = 40
  • d2,3 = d3,2 = 20
  • d2,4 = d4,2 = 50
  • d3,4 = d4,3 = 67

Na początku wyznaczamy wartości D(S, p) dla jednoelementowych zbiorów S (s=1). Są to przypadki trywialne.

  • D({2}, 2) = d1,2 = 30
  • D({3}, 3) = d1,3 = 36
  • D({4}, 4) = d1,4 = 40

Następnie wyznaczamy wartości D(S, p) dla dwuelementowych zbiorów S (s=2). W nawiasie kwadratowym zapisaliśmy numer przedostatniego węzła na ścieżce (węzła x dla optymalnego rozwiązania podproblemu). W tych przypadkach co prawda wybór jest oczywisty, gdyż zbiór S−{p} jest jednoelementowy, jednak już teraz pilnujmy notacji.

  • D({2, 3}, 2) = min( D({3}, 3) + d3,2 ) = min(36 + 20) = min(56) = 56 [3]
  • D({2, 3}, 3) = min( D({2}, 2) + d2,3 ) = min(30 + 20) = min(50) = 50 [2]
  • D({2, 4}, 2) = min( D({4}, 4) + d4,2 ) = min(40 + 50) = min(90) = 90 [4]
  • D({2, 4}, 4) = min( D({2}, 2) + d2,4 ) = min(30 + 50) = min(80) = 80 [2]
  • D({3, 4}, 3) = min( D({4}, 4) + d4,3 ) = min(40 + 67) = min(80) = 107 [4]
  • D({3, 4}, 4) = min( D({3}, 3) + d3,4 ) = min(36 + 67) = min(80) = 103 [3]

W kolejnych krokach wyznaczamy wartości D(S, p) dla trójelementowych zbiorów S (s=3).

  • D({2, 3, 4}, 2) = min( D({3, 4}, 3) + d3,2, D({3, 4}, 4) + d4,2 ) = min(107 + 20, 103 + 50) = min(127, 153) = 127 [3]
  • D({2, 3, 4}, 3) = min( D({2, 4}, 2) + d2,3, D({2, 4}, 4) + d4,3 ) = min(90 + 20, 80 + 67) = min(110, 147) = 110 [2]
  • D({2, 3, 4}, 4) = min( D({2, 3}, 2) + d2,4, D({2, 3}, 3) + d3,4 ) = min(56 + 50, 50 + 67) = min(106, 117) = 106 [2]

Trójelementowy zbiór S jest dla tego zadania największym z możliwych, gdyż nie licząc wierzchołka początkowego mamy trzy wierzchołki. Możemy więc już teraz wyznaczyć rozwiązanie całego zadania:

  • min( D({2, 3, 4}, 2) + d2,1, D({2, 3, 4}, 3) + d3,1, D({2, 3, 4}, 4) + d4,1,) = min(127 + 30, 110 + 36, 106 + 40) = min(157, 146, 146) = 146 [3]

Znamy już długość optymalnej trasy. Samą trasę możemy odtworzyć wykorzystując indeksy z kwadratowych nawiasów. Trasa to 1–3–2–4–1.

Złożoność obliczeniowa

Obliczmy, ile razy wyznaczana jest wartość D(S, p). Dla s=1 wartość tę wyznacza się n−1 razy. Dla każdego s z przedziału od 2 do n−1 rozważamy wszystkie s-elementowe kombinacje ze zbioru n−1-elementowego, przy czym dla każdej kombinacji rozważamy s wariantów punktu końcowego. Łącznie liczba wyznaczanych wartości D(S, p) wynosi zatem: $$(n-1)+∑↙{s=2}↖{n-1}s{(n-1)!}/{s!(n-1-s)!}$$ Korzystając z własności symbolu Newtona można przekształcić ten wzór do postaci: $$(n-1)2^{n-2}$$ Wartość D(S, p) wyznacza się w czasie liniowym (zakładając, że mamy bezpośredni dostęp do każdej zapamiętanej wartości, co można zapewnić prawidłowym indeksowaniem). Łącznie złożoność czasowa algorytmu wynosi więc O(n22n). Każdą wartość D(S, p) należy zapamiętać, zatem złożoność pamięciowa algorytmu to O(n2n).

Ocena: +11 Tak Nie
Liczba głosów: 15.

Dodano: 7 sierpnia 2017 11:19, ostatnia edycja: 8 listopada 2017 16:03.

REKLAMA

Zobacz też

Dziel i zwyciężaj (ang. divide and conquer) – technika projektowania algorytmów polegająca na podejściu rekurencyjnym. W technice tej problem dzielony jest na mniejsze podproblemy, te podproblemy na jeszcze mniejsze podproblemy, aż dojdzie się do przypadków trywialnych (np. posortowanie jednoelementowej tablicy, obliczenie silni z 1).

Jeśli rozpatrywany problem wymaga podzielenia na podproblemy, jest on określany jako przypadek rekurencyjny. Jeśli mamy do czynienia z przypadkiem trywialnym, jest to przypadek bazowy. Tworząc algorytm wykorzystujący metodę dziel i zwyciężaj musimy ustalić:

  • Jak rozwiązać przypadek bazowy (trywialny).
  • Jak wyznaczyć rozwiązanie problemu, mając dostępne rozwiązania podproblemów.

Przykładem algorytmu opartego na tej metodzie jest sortowanie przez scalanie.

→ Czytaj całość

Algorytm – przepis, zbiór poleceń, opis ciągu operacji prowadzących do rozwiązania konkretnego problemu. Algorytm możemy również rozumieć jako funkcję przekształcającą dane wejściowe w dane wyjściowe.

Algorytm musi być skończony, czyli jego zapis ma składać się ze skończonej liczby znaków. Musi również być poprawny, czyli dla wszystkich możliwych danych wejściowych powinien zwracać prawidłowy wynik (może być nim informacja o braku rozwiązania). Algorytm musi wykazywać również własność stopu – niezależnie od danych wejściowych obliczenia algorytmu powinny dochodzić do punktu końcowego, czyli po prostu kończyć się (nie mogą np. wpadać w nieskończoną iterację). Zapis algorytmu musi być precyzyjny, bez jakichkolwiek niejasności.

→ Czytaj całość

Stos (ang. Stack) – struktura danych, w której bezpośredni dostęp jest tylko do ostatnio dodanego elementu. Stos bywa określany także jako kolejka LIFO (z ang. Last In, First Out, czyli: ostatni na wejściu, pierwszy na wyjściu). Stos można sobie wyobrazić jako kilka rzeczy ułożonych „jedna na drugiej” – łatwo można wziąć tylko rzecz leżącą na samym wierzchu, gdyż pozostałe są przykryte.

→ Czytaj całość
Polityka prywatnościKontakt