Algorytm Helda-Karpa (czasami określany jako algorytm Bellmana-Helda-Karpa) – algorytm służący do rozwiązywania problemu komiwojażera. Jest to algorytm dokładny oparty na programowaniu dynamicznym. Algorytm ma złożoność czasową O(n22n) i złożoność pamięciową O(n2n). Jest to co prawda złożoność gorsza od wielomianowej, ale algorytm ten jest znacznie lepszy od algorytmu sprawdzającego wszystkie warianty (złożoność czasowa O(n!)).
Załóżmy, że mamy graf liczący n wierzchołków ponumerowanych 1, 2, …, n. Wierzchołek 1 niech będzie wierzchołkiem początkowym. Jako di,j oznaczmy odległość między wierzchołkami i oraz j (są to dane wejściowe).
Oznaczmy jako D(S, p) optymalną długość ścieżki wychodzącej z punktu 1 i przechodzącej przez wszystkie punkty zbioru S tak, aby zakończyć się w punkcie p (p musi należeć do S). Przykładowo, zapis D({2, 5, 6}, 5) to optymalna długość ścieżki wychodzącej z punktu 1, przechodzącej przez punkty 2 i 6, kończącej się w punkcie 5. Liczbę punktów w zbiorze S oznaczmy jako s.
Wartość D(S, p) wyznaczamy następująco:
Mówiąc obrazowo, musimy za każdym razem ustalać, który punkt powinien być przedostatni na trasie (który punkt ma poprzedzać punkt p).
Na końcu wyznacza się rozwiązanie całego problemu. W tym celu należy znaleźć poprzednika punktu 1 korzystając ze wzoru: minx∈{2, …, n}( D({2, …, n}, x) + dx,1).
Dany jest graf zawierający cztery wierzchołki (taki, jak na ilustracji). Odległości między wierzchołkami są następujące:
Na początku wyznaczamy wartości D(S, p) dla jednoelementowych zbiorów S (s=1). Są to przypadki trywialne.
Następnie wyznaczamy wartości D(S, p) dla dwuelementowych zbiorów S (s=2). W nawiasie kwadratowym zapisaliśmy numer przedostatniego węzła na ścieżce (węzła x dla optymalnego rozwiązania podproblemu). W tych przypadkach co prawda wybór jest oczywisty, gdyż zbiór S−{p} jest jednoelementowy, jednak już teraz pilnujmy notacji.
W kolejnych krokach wyznaczamy wartości D(S, p) dla trójelementowych zbiorów S (s=3).
Trójelementowy zbiór S jest dla tego zadania największym z możliwych, gdyż nie licząc wierzchołka początkowego mamy trzy wierzchołki. Możemy więc już teraz wyznaczyć rozwiązanie całego zadania:
Znamy już długość optymalnej trasy. Samą trasę możemy odtworzyć wykorzystując indeksy z kwadratowych nawiasów. Trasa to 1–3–2–4–1.
Obliczmy, ile razy wyznaczana jest wartość D(S, p). Dla s=1 wartość tę wyznacza się n−1 razy. Dla każdego s z przedziału od 2 do n−1 rozważamy wszystkie s-elementowe kombinacje ze zbioru n−1-elementowego, przy czym dla każdej kombinacji rozważamy s wariantów punktu końcowego. Łącznie liczba wyznaczanych wartości D(S, p) wynosi zatem: $$(n-1)+∑↙{s=2}↖{n-1}s{(n-1)!}/{s!(n-1-s)!}$$ Korzystając z własności symbolu Newtona można przekształcić ten wzór do postaci: $$(n-1)2^{n-2}$$ Wartość D(S, p) wyznacza się w czasie liniowym (zakładając, że mamy bezpośredni dostęp do każdej zapamiętanej wartości, co można zapewnić prawidłowym indeksowaniem). Łącznie złożoność czasowa algorytmu wynosi więc O(n22n). Każdą wartość D(S, p) należy zapamiętać, zatem złożoność pamięciowa algorytmu to O(n2n).
Dodano: 7 sierpnia 2017 11:19, ostatnia edycja: 8 listopada 2017 16:03.
Algorytm heurystyczny, heurystyka – algorytm niedający (w ogólnym przypadku) gwarancji znalezienia rozwiązania optymalnego, umożliwiający jednak znalezienie rozwiązania dość dobrego w rozsądnym czasie. Algorytmy tego typu używane są w takich problemach obliczeniowych, gdzie znalezienie rozwiązania optymalnego ma zbyt dużą złożoność obliczeniową (w szczególności są to problemy NP-trudne) lub w ogóle nie jest możliwe. Metody heurystyczne zaliczają się do sztucznej inteligencji.
Pojęcie algorytmów heurystycznych jest bardzo szerokie, dotyczy ono różnych technik projektowania algorytmów. Wiele heurystyk wykorzystuje losowość, inne zaś są deterministyczne (wówczas dla takich samych danych wejściowych algorytm zawsze zwróci ten sam wynik).
Ogólny algorytm heurystyczny (opisujący samą ideę poszukiwań) bywa określany w literaturze jako metaheurystyka. Zgodnie z tym nazewnictwem, metaheurystyką jest np. algorytm zachłanny (jako ogólna idea), zaś heurystyką jest np. algorytm najbliższego sąsiada (jako zastosowanie idei algorytmu zachłannego do konkretnego problemu).
Przykładowe techniki konstruowania algorytmów heurystycznych to:
Kolejka (ang. Queue) – struktura danych, w której elementy pobierane są z początku, a dodawane na końcu. Z kolejki można zatem pobrać tylko ten element, który był dodany najwcześniej. Kolejka bywa określana również jako kolejka FIFO (z ang. First In, First Out), w odróżnieniu od kolejki LIFO, czyli stosu.
Algorytm genetyczny – jedna z metaheurystyk inspirowanych biologiczną ewolucją.
Pojęcie algorytmu genetycznego nie jest powiązane z żadnym konkretnym problemem obliczeniowym, algorytm ten może być wykorzystywany do rozwiązywania różnych problemów. Algorytm genetyczny nie próbuje rozwiązywać problemu w sposób analityczny, ale próbuje uzyskać jak najlepsze rozwiązania poprzez wybieranie jak najlepszych cech rozwiązań z określonej puli. Implementując algorytm genetyczny należy przedstawić potencjalne rozwiązanie problemu w postaci jakiejś struktury danych, a następnie zdefiniować operacje krzyżowania, mutacji i selekcji. Zakładamy, że z każdym kolejnym pokoleniem rozwiązania występujące w populacji będą coraz lepsze.