Algorytm Helda-Karpa

Graf, 4 wierzchołki (1) Graf użyty w przykładzie wykonania algorytmu
REKLAMA

Elektronika bez oporu. 55 układów tranzystorowych
−40%35,94 zł
Algorytmy, struktury danych i techniki programowania. Wydanie VI
−40%35,40 zł

Algorytm Helda-Karpa (czasami określany jako algorytm Bellmana-Helda-Karpa) – algorytm służący do rozwiązywania problemu komiwojażera. Jest to algorytm dokładny oparty na programowaniu dynamicznym. Algorytm ma złożoność czasową O(n22n) i złożoność pamięciową O(n2n). Jest to co prawda złożoność gorsza od wielomianowej, ale algorytm ten jest znacznie lepszy od algorytmu sprawdzającego wszystkie warianty (złożoność czasowa O(n!)).

Działanie algorytmu

Załóżmy, że mamy graf liczący n wierzchołków ponumerowanych 1, 2, …, n. Wierzchołek 1 niech będzie wierzchołkiem początkowym. Jako di,j oznaczmy odległość między wierzchołkami i oraz j (są to dane wejściowe).

Oznaczmy jako D(S, p) optymalną długość ścieżki wychodzącej z punktu 1 i przechodzącej przez wszystkie punkty zbioru S tak, aby zakończyć się w punkcie p (p musi należeć do S). Przykładowo, zapis D({2, 5, 6}, 5) to optymalna długość ścieżki wychodzącej z punktu 1, przechodzącej przez punkty 2 i 6, kończącej się w punkcie 5. Liczbę punktów w zbiorze S oznaczmy jako s.

Wartość D(S, p) wyznaczamy następująco:

  • Jeśli s=1, to D(S, p) = d1,p,
  • Jeśli s>1, to D(S, p) = minx∈(S-{p})( D(S−{p}, x) + dx,p).

Mówiąc obrazowo, musimy za każdym razem ustalać, który punkt powinien być przedostatni na trasie (który punkt ma poprzedzać punkt p).

Na końcu wyznacza się rozwiązanie całego problemu. W tym celu należy znaleźć poprzednika punktu 1 korzystając ze wzoru: minx∈{2, …, n}( D({2, …, n}, x) + dx,1).

Przykład

Dany jest graf zawierający cztery wierzchołki (taki, jak na ilustracji). Odległości między wierzchołkami są następujące:

  • d1,2 = d2,1 = 30
  • d1,3 = d3,1 = 36
  • d1,4 = d4,1 = 40
  • d2,3 = d3,2 = 20
  • d2,4 = d4,2 = 50
  • d3,4 = d4,3 = 67

Na początku wyznaczamy wartości D(S, p) dla jednoelementowych zbiorów S (s=1). Są to przypadki trywialne.

  • D({2}, 2) = d1,2 = 30
  • D({3}, 3) = d1,3 = 36
  • D({4}, 4) = d1,4 = 40

Następnie wyznaczamy wartości D(S, p) dla dwuelementowych zbiorów S (s=2). W nawiasie kwadratowym zapisaliśmy numer przedostatniego węzła na ścieżce (węzła x dla optymalnego rozwiązania podproblemu). W tych przypadkach co prawda wybór jest oczywisty, gdyż zbiór S−{p} jest jednoelementowy, jednak już teraz pilnujmy notacji.

  • D({2, 3}, 2) = min( D({3}, 3) + d3,2 ) = min(36 + 20) = min(56) = 56 [3]
  • D({2, 3}, 3) = min( D({2}, 2) + d2,3 ) = min(30 + 20) = min(50) = 50 [2]
  • D({2, 4}, 2) = min( D({4}, 4) + d4,2 ) = min(40 + 50) = min(90) = 90 [4]
  • D({2, 4}, 4) = min( D({2}, 2) + d2,4 ) = min(30 + 50) = min(80) = 80 [2]
  • D({3, 4}, 3) = min( D({4}, 4) + d4,3 ) = min(40 + 67) = min(80) = 107 [4]
  • D({3, 4}, 4) = min( D({3}, 3) + d3,4 ) = min(36 + 67) = min(80) = 103 [3]

W kolejnych krokach wyznaczamy wartości D(S, p) dla trójelementowych zbiorów S (s=3).

  • D({2, 3, 4}, 2) = min( D({3, 4}, 3) + d3,2, D({3, 4}, 4) + d4,2 ) = min(107 + 20, 103 + 50) = min(127, 153) = 127 [3]
  • D({2, 3, 4}, 3) = min( D({2, 4}, 2) + d2,3, D({2, 4}, 4) + d4,3 ) = min(90 + 20, 80 + 67) = min(110, 147) = 110 [2]
  • D({2, 3, 4}, 4) = min( D({2, 3}, 2) + d2,4, D({2, 3}, 3) + d3,4 ) = min(56 + 50, 50 + 67) = min(106, 117) = 106 [2]

Trójelementowy zbiór S jest dla tego zadania największym z możliwych, gdyż nie licząc wierzchołka początkowego mamy trzy wierzchołki. Możemy więc już teraz wyznaczyć rozwiązanie całego zadania:

  • min( D({2, 3, 4}, 2) + d2,1, D({2, 3, 4}, 3) + d3,1, D({2, 3, 4}, 4) + d4,1,) = min(127 + 30, 110 + 36, 106 + 40) = min(157, 146, 146) = 146 [3]

Znamy już długość optymalnej trasy. Samą trasę możemy odtworzyć wykorzystując indeksy z kwadratowych nawiasów. Trasa to 1–3–2–4–1.

Złożoność obliczeniowa

Obliczmy, ile razy wyznaczana jest wartość D(S, p). Dla s=1 wartość tę wyznacza się n−1 razy. Dla każdego s z przedziału od 2 do n−1 rozważamy wszystkie s-elementowe kombinacje ze zbioru n−1-elementowego, przy czym dla każdej kombinacji rozważamy s wariantów punktu końcowego. Łącznie liczba wyznaczanych wartości D(S, p) wynosi zatem: $$(n-1)+∑↙{s=2}↖{n-1}s{(n-1)!}/{s!(n-1-s)!}$$ Korzystając z własności symbolu Newtona można przekształcić ten wzór do postaci: $$(n-1)2^{n-2}$$ Wartość D(S, p) wyznacza się w czasie liniowym (zakładając, że mamy bezpośredni dostęp do każdej zapamiętanej wartości, co można zapewnić prawidłowym indeksowaniem). Łącznie złożoność czasowa algorytmu wynosi więc O(n22n). Każdą wartość D(S, p) należy zapamiętać, zatem złożoność pamięciowa algorytmu to O(n2n).

Ocena: +9 Tak Nie
Liczba głosów: 13.

Dodano: 7 sierpnia 2017 11:19, ostatnia edycja: 8 listopada 2017 16:03.

REKLAMA

Zobacz też

Algorytm Floyda-Warshalla – algorytm służący do wyznaczania najkrótszych ścieżek pomiędzy każdą parą wierzchołków w grafie. Jest to algorytm oparty na programowaniu dynamicznym. Algorytm ma złożoność czasową O(n3) i złożoność pamięciową O(n2), gdzie n jest liczbą wierzchołków.

Algorytm dopuszcza krawędzie o ujemnych wagach, o ile nie tworzą ujemnych cykli. Algorytm może być również wykorzystywany do wyszukiwania ujemnych cykli w grafie.

→ Czytaj całość
Algorytm najmniejszej krawędzi – algorytm służący do rozwiązywania problemu komiwojażera. Jest to algorytm wykorzystujący strategię zachłanną, jednak w inny sposób, niż algorytm najbliższego sąsiada. W anglojęzycznej literaturze algorytm jest najczęściej określany po prostu jako greedy algorithm (algorytm zachłanny), w skrócie GR.
→ Czytaj całość

Wyznaczanie maksymalnego przepływu – problem obliczeniowy polegający na wyznaczeniu maksymalnego przepływu w sieci przepływowej.

Sieć przepływowa jest skierowanym grafem prostym. Każdy łuk (krawędź skierowana w grafie) ma swoją nieujemną wagę, która oznacza maksymalny dopuszczalny przepływ w tym łuku. Na potrzeby tego artykułu nazwijmy rzeczy przepływające przez sieć danymi. Jeden z wierzchołków sieci jest źródłem, z którego wypływają przesyłane dane. Inny z wierzchołków to ujście, do którego te dane wpływają. Zakłada się ponadto, że dla każdego z pozostałych wierzchołków istnieje ścieżka ze źródła do ujścia przechodząca przez ten wierzchołek.

Przepływem w sieci nazywamy przyporządkowanie każdemu łukowi pewnej wartości, która oznacza liczbę danych aktualnie przesyłanych przez ten łuk. Wartości te muszą spełniać następujące warunki:

  • Wartość przyporządkowana krawędzi musi być mniejsza lub równa jej wadze (warunek przepustowości).
  • Do każdego wierzchołka (poza źródłem i ujściem) musi wpływać tyle samo danych, ile z niego wypływa (warunek zachowania przepływu).

Omawiany problem polega na dobraniu takiego przepływu, aby liczba danych wypływających ze źródła (i zarazem wpływających do ujścia) była jak największa.

→ Czytaj całość
Polityka prywatnościKontakt