Problem wydawania reszty

REKLAMA

Prosto o AI. Jak działa i myśli sztuczna inteligencja?
−19%35,92 zł
Algorytmy bez tajemnic
54,90 zł

Problem wydawania reszty (ang. change-making problem) – problem obliczeniowy polegający na tym, aby mając określony zbiór nominałów wyrazić daną kwotę za pomocą jak najmniejszej liczby monet. Jest to szczególny przypadek problemu plecakowego.

Formalny opis problemu

Dany jest ciąg nominałów A=(c1, c2, …, cn) oraz kwota do wydania r. Nominały są posortowane rosnąco (c1 < c2 < … < cn). Należy wyznaczyć takie nieujemne współczynniki k1, k2, …, kn, że k1c1+k2cc+…+kncn=r, a suma k1+k2+…+kn jest jak najmniejsza.

Dla uproszczenia można przyjąć, że wszystkie nominały oraz kwota r muszą być podzielne przez najmniejszy nominał c1 (np. najmniejszy nominał jest równy 1, a pozostałe nominały i kwota do wydania to liczby naturalne). Zapobiega to sytuacji, w której kwota r nie jest możliwa do wydania.

Problem może występować w dwóch wariantach, które w anglojęzycznej literaturze są określane jako bounded (dosłownie: ograniczony) i unbounded (dosłownie: nieograniczony). Problem ograniczony polega na tym, że dysponujemy jedynie określoną liczbą monet każdego nominału. W problemie nieograniczonym liczba monet każdego nominału jest dowolna. W artykułach dotyczących konkretnych algorytmów rozważamy problem w wersji nieograniczonej.

Algorytmy rozwiązujące problem

Do rozwiązania problemu wydawania reszty można zastosować m.in. następujące algorytmy:
  • Algorytm zachłanny – algorytm ten jest szybki i intuicyjny, ale nie dla każdego zbioru nominałów daje gwarancję znalezienia rozwiązania optymalnego.
  • Algorytm oparty na programowaniu dynamicznym – wolniejszy, ale zawsze zwracający rozwiązanie optymalne. Algorytm ten ma również inny wariant.
  • Algorytm oparty na metodzie branch-and-bound – również zawsze zwracający rozwiązanie optymalne. Algorytm ten jest opisany w książce Knapstack Problems, Algorithms and Computer Implementations (link w bibliografii).

Bibliografia

  • Z.J. Czech, S. Deorowicz, P. Fabian, Algorytmy i struktury danych. Wybrane zagadnienia, Wydawnictwo Politechniki Śląskiej, Gliwice, 2010, ISBN 9788373356689.
  • S. Martello, P. Toth, Knapstack Problems: Algorithms and Computer Implementations, Nowy Jork, 1990, ISBN 0471924202.
Ocena: 0 Tak Nie
Liczba głosów: 16.

Dodano: 5 października 2016 11:19, ostatnia edycja: 30 stycznia 2019 13:59.

REKLAMA

Zobacz też

Metoda Otsu – algorytm służący do binaryzacji obrazu, czyli przekształcenia obrazu w odcieniach szarości do obrazu binarnego. Metoda ta realizuje progowanie globalne – dla całego obrazu wyznaczany jest jeden próg jasności, a następnie wszystkim pikselom jaśniejszym od tego progu przypisywana jest jedna wartość, a ciemniejszym druga.

Algorytm jest oparty na analizie histogramu. Przygotowanie histogramu polega na zliczeniu pikseli w każdym możliwym odcieniu (zazwyczaj liczba odcieni wynosi 256, gdyż tyle da się zakodować w jednym bajcie). Następnie należy sprawdzić każdy możliwy próg jasności i wybrać ten, dla którego wariancja międzyklasowa jest największa (lub suma ważona wariancji wewnątrzklasowych jest najmniejsza).

Jeśli obrazem wejściowym jest obraz kolorowy, można go łatwo sprowadzić do odcieni szarości. W przypadku kolorów zakodowanych w RGB najprostszym rozwiązaniem jest uśrednienie dla każdego piksela wartości wszystkich trzech kanałów.

→ Czytaj całość

Problem wydawania reszty (ang. change-making problem) – problem obliczeniowy polegający na tym, aby mając określony zbiór nominałów wyrazić daną kwotę za pomocą jak najmniejszej liczby monet. Jest to szczególny przypadek problemu plecakowego.

→ Czytaj całość

Algorytm Helda-Karpa (czasami określany jako algorytm Bellmana-Helda-Karpa) – algorytm służący do rozwiązywania problemu komiwojażera. Jest to algorytm dokładny oparty na programowaniu dynamicznym. Algorytm ma złożoność czasową O(n22n) i złożoność pamięciową O(n2n). Jest to co prawda złożoność gorsza od wielomianowej, ale algorytm ten jest znacznie lepszy od algorytmu sprawdzającego wszystkie warianty (złożoność czasowa O(n!)).

→ Czytaj całość
Polityka prywatnościKontakt