Problem wydawania reszty

REKLAMA Algorytmy. Ćwiczenia
34,90 zł
Jak naprawić sprzęt elektroniczny. Poradnik dla nieelektronika. Wydanie II
−40%29,40 zł
Spring w akcji. Wydanie V
−30%62,30 zł
Opus magnum C++. Misja w nadprzestrzeń C++14/17. Tom 4
−40%29,40 zł

Problem wydawania reszty (ang. change-making problem) – problem obliczeniowy polegający na tym, aby mając określony zbiór nominałów wyrazić daną kwotę za pomocą jak najmniejszej liczby monet. Jest to szczególny przypadek problemu plecakowego.

Formalny opis problemu

Dany jest ciąg nominałów A=(c1, c2, …, cn) oraz kwota do wydania r. Nominały są posortowane rosnąco (c1 < c2 < … < cn). Należy wyznaczyć takie nieujemne współczynniki k1, k2, …, kn, że k1c1+k2cc+…+kncn=r, a suma k1+k2+…+kn jest jak najmniejsza.

Dla uproszczenia można przyjąć, że wszystkie nominały oraz kwota r muszą być podzielne przez najmniejszy nominał c1 (np. najmniejszy nominał jest równy 1, a pozostałe nominały i kwota do wydania to liczby naturalne). Zapobiega to sytuacji, w której kwota r nie jest możliwa do wydania.

Problem może występować w dwóch wariantach, które w anglojęzycznej literaturze są określane jako bounded (dosłownie: ograniczony) i unbounded (dosłownie: nieograniczony). Problem ograniczony polega na tym, że dysponujemy jedynie określoną liczbą monet każdego nominału. W problemie nieograniczonym liczba monet każdego nominału jest dowolna. W artykułach dotyczących konkretnych algorytmów rozważamy problem w wersji nieograniczonej.

Algorytmy rozwiązujące problem

Do rozwiązania problemu wydawania reszty można zastosować m.in. następujące algorytmy:
  • Algorytm zachłanny – algorytm ten jest szybki i intuicyjny, ale nie dla każdego zbioru nominałów daje gwarancję znalezienia rozwiązania optymalnego.
  • Algorytm oparty na programowaniu dynamicznym – wolniejszy, ale zawsze zwracający rozwiązanie optymalne. Algorytm ten ma również inny wariant.
  • Algorytm oparty na metodzie branch-and-bound – również zawsze zwracający rozwiązanie optymalne. Algorytm ten jest opisany w książce Knapstack Problems, Algorithms and Computer Implementations (link w bibliografii).

Bibliografia

  • Z.J. Czech, S. Deorowicz, P. Fabian, Algorytmy i struktury danych. Wybrane zagadnienia, Wydawnictwo Politechniki Śląskiej, Gliwice, 2010, ISBN 9788373356689.
  • S. Martello, P. Toth, Knapstack Problems: Algorithms and Computer Implementations, Nowy Jork, 1990, ISBN 0471924202.
Ocena: +1 Tak Nie
Liczba głosów: 1.

Dodano: 5 października 2016 11:19, ostatnia edycja: 30 stycznia 2019 13:59.

REKLAMA

Zobacz też

Przeszukiwanie w głąb (ang. depth-first search, w skrócie DFS) – jeden z dwóch podstawowych algorytmów przeszukiwania grafu. Polega na przechodzeniu zawsze do kolejnego nieodwiedzonego wierzchołka. Jeśli dany wierzchołek nie ma nieodwiedzonych sąsiadów, wracamy do poprzedniego wierzchołka i sprawdzamy jego sąsiadów. Mówiąc obrazowo, w algorytmie tym wchodzimy tak głęboko, jak to możliwe (przechodzimy dalej, dopóki się da).

Algorytm można zapisać w sposób rekurencyjny. Wywoływana rekurencyjnie procedura działa następująco: oznacz wierzchołek jako odwiedzony, a następnie wywołaj tę procedurę dla każdego sąsiada danego wierzchołka, jeśli nie został on wcześniej odwiedzony. Na początku wywołujemy procedurę dla wierzchołka początkowego.

→ Czytaj całość

Metoda z zastosowaniem przepływu blokującego – algorytm wyznaczający maksymalny przepływ w sieci przepływowej. W algorytmie tym przepływ zwiększany jest iteracyjnie, w każdej iteracji wyznaczony przepływ jest powiększany o przepływ blokujący w warstwowej sieci residualnej.

→ Czytaj całość

Sortowanie przez scalanie – rekurencyjny algorytm sortowania wykorzystujący metodę dziel i zwyciężaj.

→ Czytaj całość
Polityka prywatnościKontakt