Problem wydawania reszty

REKLAMA

Kierunek jakość. Jak unikać błędów w projekcie
−35%29,18 zł
Algorytmy
−35%31,85 zł

Problem wydawania reszty (ang. change-making problem) – problem obliczeniowy polegający na tym, aby mając określony zbiór nominałów wyrazić daną kwotę za pomocą jak najmniejszej liczby monet. Jest to szczególny przypadek problemu plecakowego.

Formalny opis problemu

Dany jest ciąg nominałów A=(c1, c2, …, cn) oraz kwota do wydania r. Nominały są posortowane rosnąco (c1 < c2 < … < cn). Należy wyznaczyć takie nieujemne współczynniki k1, k2, …, kn, że k1c1+k2cc+…+kncn=r, a suma k1+k2+…+kn jest jak najmniejsza.

Dla uproszczenia można przyjąć, że wszystkie nominały oraz kwota r muszą być podzielne przez najmniejszy nominał c1 (np. najmniejszy nominał jest równy 1, a pozostałe nominały i kwota do wydania to liczby naturalne). Zapobiega to sytuacji, w której kwota r nie jest możliwa do wydania.

Problem może występować w dwóch wariantach, które w anglojęzycznej literaturze są określane jako bounded (dosłownie: ograniczony) i unbounded (dosłownie: nieograniczony). Problem ograniczony polega na tym, że dysponujemy jedynie określoną liczbą monet każdego nominału. W problemie nieograniczonym liczba monet każdego nominału jest dowolna. W artykułach dotyczących konkretnych algorytmów rozważamy problem w wersji nieograniczonej.

Algorytmy rozwiązujące problem

Do rozwiązania problemu wydawania reszty można zastosować m.in. następujące algorytmy:
  • Algorytm zachłanny – algorytm ten jest szybki i intuicyjny, ale nie dla każdego zbioru nominałów daje gwarancję znalezienia rozwiązania optymalnego.
  • Algorytm oparty na programowaniu dynamicznym – wolniejszy, ale zawsze zwracający rozwiązanie optymalne. Algorytm ten ma również inny wariant.
  • Algorytm oparty na metodzie branch-and-bound – również zawsze zwracający rozwiązanie optymalne. Algorytm ten jest opisany w książce Knapstack Problems, Algorithms and Computer Implementations (link w bibliografii).

Bibliografia

  • Z.J. Czech, S. Deorowicz, P. Fabian, Algorytmy i struktury danych. Wybrane zagadnienia, Wydawnictwo Politechniki Śląskiej, Gliwice, 2010, ISBN 9788373356689.
  • S. Martello, P. Toth, Knapstack Problems: Algorithms and Computer Implementations, Nowy Jork, 1990, ISBN 0471924202.
Ocena: +1 Tak Nie
Liczba głosów: 1.

Dodano: 5 października 2016 11:19, ostatnia edycja: 30 stycznia 2019 13:59.

REKLAMA

Zobacz też

Graf – struktura składająca się ze zbioru wierzchołków oraz zbioru krawędzi. Grafy mają szerokie zastosowanie w informatyce, można za ich pomocą przedstawić wiele zagadnień.

Wyróżniamy grafy nieskierowane oraz grafy skierowane. W grafie nieskierowanym relacja sąsiedztwa jest symetryczna, tzn. krawędź łączy wierzchołki „w obie strony”. W grafie skierowanym krawędzie są „jednokierunkowe”. Krawędź grafu skierowanego zazwyczaj jest określana jako łuk.

Graf ważony (inaczej graf z wagami) to taki graf, w którym każdej krawędzi przypisana jest pewna wartość liczbowa. Wartość ta może oznaczać np. długość krawędzi lub jej przepustowość.

→ Czytaj całość

Notacja dużego O – notacja przedstawiająca asymptotyczne tempo wzrostu, wykorzystywana do zapisywania złożoności obliczeniowej algorytmu. Za pomocą tej notacji zapisywany jest rząd wielkości funkcji wyrażającej liczbę operacji dominujących (w przypadku złożoności czasowej) lub rozmiar wymaganej pamięci (w przypadku złożoności pamięciowej) w zależności od liczby danych wejściowych.

Wykorzystując notację dużego O nie podajemy dokładnego wzoru funkcji, a jedynie jej najbardziej znaczący składnik, w dodatku z pominięciem stałego współczynnika. Przykładowo, funkcję postaci f(n)=5n2+20n+100 możemy zapisać jako O(n2). Zakładamy bowiem, że dla dostatecznie dużych n wpływ pomijanych elementów jest znikomy. Choć oczywiście dla małych n może się zdarzyć, że funkcja o gorszej złożoności będzie się wykonywała szybciej.

Weźmy dla przykładu funkcje f(n) = 1000n+2000 i g(n) = n2. Choć pierwsza funkcja ma pozornie bardzo duże stałe współczynniki, to dla n ≥ 1002 będzie ona przyjmowała wartości mniejsze. Im większe n, tym ta różnica będzie wyraźniejsza. Dla n = 10000 (w przypadku danych przetwarzanych komputerowo nie jest to wielka wartość) f(n) = 10002000 (ok. 10 mln), a g(n) = 100000000 (100 mln), czyli blisko 10 razy więcej.

Możliwe jest również wykorzystanie notacji dużego O dla funkcji wielu zmiennych. Wówczas zapis może wyglądać tak: O(v2e). Znajduje to zastosowanie np. dla algorytmów operujących na grafach, gdzie złożoność zależy zarówno od liczby wierzchołków, jak i liczby krawędzi w grafie.

→ Czytaj całość

Minimalne drzewo rozpinające (ang. minimum spanning tree, w skrócie MST), inaczej drzewo rozpinające o minimalnej wadze – drzewo łączące wszystkie wierzchołki pewnego grafu spójnego mające najmniejszą możliwą sumę wag krawędzi.

Jeśli graf ma v wierzchołków, to jego drzewo rozpinające zawsze będzie miało v-1 krawędzi. Jeśli ten graf ma e krawędzi, aby utworzyć drzewo rozpinające, trzeba usunąć z grafu e-v+1 krawędzi. Liczba ta jest określana jako liczba cyklomatryczna.

→ Czytaj całość
Polityka prywatnościKontakt