PHP 7. Algorytmy i struktury danych
−25%44,25 zł
Jak się nie pomylić, czyli potęga matematycznego myślenia
−30%27,93 zł
Programowanie w języku C. Ćwiczenia praktyczne. Wydanie II
−25%14,92 zł
Algorytmy. Ilustrowany przewodnik
−25%41,17 zł
ASP.NET Core MVC 2. Zaawansowane programowanie. Wydanie VII
129,00 zł
JavaScript i jQuery. Interaktywne strony WWW dla każdego
−25%74,25 zł

Problem wydawania reszty

Problem wydawania reszty (ang. change-making problem) – problem obliczeniowy polegający na tym, aby mając określony zbiór nominałów wyrazić daną kwotę za pomocą jak najmniejszej liczby monet. Jest to szczególny przypadek problemu plecakowego.

Formalny opis problemu

Dany jest ciąg nominałów A=(c1, c2, …, cn) oraz kwota do wydania r. Nominały są posortowane rosnąco (c1 < c2 < … < cn). Należy wyznaczyć takie nieujemne współczynniki k1, k2, …, kn, że k1c1+k2cc+…+kncn=r, a suma k1+k2+…+kn jest jak najmniejsza.

Dla uproszczenia można przyjąć, że wszystkie nominały oraz kwota r muszą być podzielne przez najmniejszy nominał c1 (np. najmniejszy nominał jest równy 1, a pozostałe nominały i kwota do wydania to liczby naturalne). Zapobiega to sytuacji, w której kwota r nie jest możliwa do wydania.

Problem może występować w dwóch wariantach, które w anglojęzycznej literaturze są określane jako bounded (dosłownie: ograniczony) i unbounded (dosłownie: nieograniczony). Problem ograniczony polega na tym, że dysponujemy jedynie określoną liczbą monet każdego nominału. W problemie nieograniczonym liczba monet każdego nominału jest dowolna. W artykułach dotyczących konkretnych algorytmów rozważamy problem w wersji nieograniczonej.

Algorytmy rozwiązujące problem

Do rozwiązania problemu wydawania reszty można zastosować m.in. następujące algorytmy:
  • Algorytm zachłanny – algorytm ten jest szybki i intuicyjny, ale nie dla każdego zbioru nominałów daje gwarancję znalezienia rozwiązania optymalnego.
  • Algorytm oparty na programowaniu dynamicznym – wolniejszy, ale zawsze zwracający rozwiązanie optymalne. Algorytm ten ma również inny wariant.
  • Algorytm oparty na metodzie branch-and-bound – również zawsze zwracający rozwiązanie optymalne. Algorytm ten jest opisany w książce Knapstack Problems, Algorithms and Computer Implementations (link w bibliografii).

Bibliografia

  1. Z.J. Czech, S. Deorowicz, P. Fabian, Algorytmy i struktury danych. Wybrane zagadnienia, Wydawnictwo Politechniki Śląskiej, Gliwice, 2010.
  2. S. Martello, P. Toth, Knapstack Problems, Algorithms and Computer Implementations, 1990. (link) [dostęp: 2 grudnia 2016]
Ocena: 0 Tak Nie
Liczba głosów: 0.

Dodano: 5 października 2016 11:19, ostatnia edycja: 24 marca 2017 10:28.

Zobacz też

Dziel i zwyciężaj (ang. divide and conquer) – technika projektowania algorytmów polegająca na podejściu rekurencyjnym. W technice tej problem dzielony jest na mniejsze podproblemy, te podproblemy na jeszcze mniejsze podproblemy, aż dojdzie się do przypadków trywialnych (np. posortowanie jednoelementowej tablicy, obliczenie silni z 1).

Jeśli rozpatrywany problem wymaga podzielenia na podproblemy, jest on określany jako przypadek rekurencyjny. Jeśli mamy do czynienia z przypadkiem trywialnym, jest to przypadek bazowy. Tworząc algorytm wykorzystujący metodę dziel i zwyciężaj musimy ustalić:

  • Jak rozwiązać przypadek bazowy (trywialny).
  • Jak wyznaczyć rozwiązanie problemu, mając dostępne rozwiązania podproblemów.

Przykładem algorytmu opartego na tej metodzie jest sortowanie przez scalanie.

→ Czytaj całość

Powtarzalny algorytm najbliższego sąsiada (ang. repetitive nearest neighbour algorithm, w skrócie RNN) – algorytm służący do rozwiązywania problemu komiwojażera korzystający z algorytmu najbliższego sąsiada.

Algorytm polega na wielokrotnym wykonaniu algorytmu najbliższego sąsiada w taki sposób, aby każdy wierzchołek raz był wierzchołkiem początkowym. Następnie algorytm zwraca najlepsze spośród otrzymanych rozwiązań.

Dla grafu pełnego algorytm ma złożoność O(n3), gdzie n jest liczbą wierzchołków. W trakcie wykonywania algorytmu RNN n razy zostanie wykonany algorytm najbliższego sąsiada, który ma złożoność czasową O(n2).

Algorytm RNN nie daje gwarancji znalezienia rozwiązania optymalnego. W odróżnieniu od algorytmu najbliższego sąsiada daje jednak gwarancję, że zwróci rozwiązanie co najmniej tak dobre, jak n/2-1 innych rozwiązań (dowód i więcej informacji na ten temat znajduje się w pracy podanej w bibliografii).

→ Czytaj całość

Problem komiwojażera (ang. travelling salesman problem, w skrócie TSP) – problem obliczeniowy polegający na poszukiwaniu w grafie takiego cyklu, który zawiera wszystkie wierzchołki (każdy dokładnie raz) i ma jak najmniejszy koszt. Bardziej formalnie, problem komiwojażera polega na poszukiwaniu w grafie cyklu Hammiltona o najmniejszej wadze.

Problem ma liczne zastosowania w życiu codziennym. Najlepszym przykładem jest praca kuriera, który musi wyjechać z magazynu, zawieźć przesyłki w różne miejsca i wrócić do magazynu.

Nie jest znany efektywny (tj. działający w czasie co najwyżej wielomianowym) algorytm dający gwarancję znalezienia optymalnego rozwiązania problemu komiwojażera. Problem ten jest bowiem zaliczany do klasy problemów NP-trudnych. W wersji decyzyjnej (czy istnieje cykl o długości mniejszej od x) problem jest zaliczany do klasy problemów NP-zupełnych. W grafie pełnym mającym n wierzchołków liczba możliwych cykli Hammiltona wynosi aż (n-1)!/2. W praktyce sprawdzenie wszystkich możliwości jest zatem wykonalne tylko dla niewielkiej liczby wierzchołków.

→ Czytaj całość
Polityka prywatnościKontakt