K-opt, algorytm k-optymalny – algorytm lokalnej optymalizacji wykorzystywany przy rozwiązywaniu problemu komiwojażera. Algorytm ten nie służy do samego wyznaczania trasy, a jedynie do ulepszania jej. Najprostszą wersją tego algorytmu jest algorytm 2-optymalny.
Algorytm polega na usuwaniu z cyklu k krawędzi i zastępowaniu ich innymi krawędziami tak, aby utworzyć inny prawidłowy cykl. Jeśli osiągnięte w ten sposób rozwiązanie jest lepsze od dotychczas znalezionego, zapamiętujemy je. Za każdym razem modyfikujemy cykl początkowy (nie rozwiązanie z poprzedniego kroku).
Usunięcie z cyklu k krawędzi sprawia, że cykl zostaje podzielony na k fragmentów. Należy sprawdzić wszystkie możliwości połączenia tych fragmentów w całość. Taki krok algorytmu należy powtórzyć dla każdej k-elementowej grupy krawędzi.
Algorytm można wykonywać kilkakrotnie, aż do momentu, w którym żadna modyfikacja nie spowoduje skrócenia trasy. W ten sposób osiągnięte zostanie minimum lokalne.
Załóżmy, że mamy cykl liczący n krawędzi. Jeśli chcemy usunąć z niego k krawędzi, to możemy uczynić to na n!/(k!(n-k)!) sposobów (kombinacja z n po k). Dla każdej kombinacji musimy sprawdzić wszystkie możliwości połączenia fragmentów cyklu w inny sposób. Fragmenty te możemy ustawić w różnej kolejności na (k-1)! sposobów. Dodatkowo każdy fragment można odwrócić, czyli wartość tę musimy pomnożyć przez 2k-1. Jest to oszacowanie z pewnym nadmiarem – jeśli dany fragment jest jednoelementowy, to nie trzeba go odwracać (im większe k, tym więcej będzie takich elementów, zatem dla dużych k czynnik ten będzie zanikał).
Podsumowując, mamy do sprawdzenia maksymalnie n!2k-1/(k(n-k)!) wariantów. Jest to złożoność rzędu O(nk), przy czym nawet dla dużych k złożoność nie przekroczy n!.
Biorąc pod uwagę, że złożoność algorytmu w zależności od k jest wykładnicza, w praktyce używa się tylko niewielkich wartości k, zazwyczaj 2 lub 3. Dla k=n wykonanie algorytmu byłoby tożsame ze sprawdzeniem wszystkich możliwych rozwiązań problemu komiwojażera.
Dodano: 17 czerwca 2017 15:20, ostatnia edycja: 17 czerwca 2017 16:08.
Sortowanie – zagadnienie polegające na uporządkowaniu elementów zbioru rosnąco lub malejąco według pewnego klucza. Zagadnienie to, ze względu na częstość występowania, jest bardzo istotne dla informatyki. Istnieje wiele różnych algorytmów realizujących sortowanie.
Quicksort, sortowanie szybkie – algorytm sortowania działający w średnim przypadku w czasie liniowo-logarytmicznym. Algorytm jest oparty na metodzie dziel i zwyciężaj. Nie jest to algorytm stabilny ani wykazujący zachowanie naturalne, jednak ze względu na efektywność jest algorytmem bardzo popularnym.
Ten artykuł opisuje pewną modyfikację algorytmu opartego na programowaniu dynamicznym rozwiązującego problem wydawania reszty. Algorytm ten daje gwarancję znalezienia rozwiązania optymalnego. Algorytm zaproponował J.W. Wright w pracy The Change-Making Problem (link w bibliografii).