Programowanie w języku C. Ćwiczenia praktyczne. Wydanie II
19,90 zł
Biblia e-biznesu 2. Nowy Testament
−30%90,30 zł
Algorytmy, struktury danych i techniki programowania. Wydanie V
49,00 zł
Młodzi giganci programowania. Scratch
34,90 zł
Algorytmy. Ilustrowany przewodnik
54,90 zł
Visual Studio 2017. Tworzenie aplikacji Windows w języku C#
89,00 zł

K-opt

2-opt przykład Przykładowe wykonanie algorytmu 2-optymalnego
3-opt przykład 8 sposobów połączenia ze sobą 3 fragmentów cyklu (jeden krok algorytmu 3-opt)

K-opt, algorytm k-optymalny – algorytm lokalnej optymalizacji wykorzystywany przy rozwiązywaniu problemu komiwojażera. Algorytm ten nie służy do samego wyznaczania trasy, a jedynie do ulepszania jej. Najprostszą wersją tego algorytmu jest algorytm 2-optymalny.

Działanie algorytmu

Algorytm polega na usuwaniu z cyklu k krawędzi i zastępowaniu ich innymi krawędziami tak, aby utworzyć inny prawidłowy cykl. Jeśli osiągnięte w ten sposób rozwiązanie jest lepsze od dotychczas znalezionego, zapamiętujemy je. Za każdym razem modyfikujemy cykl początkowy (nie rozwiązanie z poprzedniego kroku).

Usunięcie z cyklu k krawędzi sprawia, że cykl zostaje podzielony na k fragmentów. Należy sprawdzić wszystkie możliwości połączenia tych fragmentów w całość. Taki krok algorytmu należy powtórzyć dla każdej k-elementowej grupy krawędzi.

Algorytm można wykonywać kilkakrotnie, aż do momentu, w którym żadna modyfikacja nie spowoduje skrócenia trasy. W ten sposób osiągnięte zostanie minimum lokalne.

Złożoność obliczeniowa

Załóżmy, że mamy cykl liczący n krawędzi. Jeśli chcemy usunąć z niego k krawędzi, to możemy uczynić to na n!/(k!(n-k)!) sposobów (kombinacja z n po k). Dla każdej kombinacji musimy sprawdzić wszystkie możliwości połączenia fragmentów cyklu w inny sposób. Fragmenty te możemy ustawić w różnej kolejności na (k-1)! sposobów. Dodatkowo każdy fragment można odwrócić, czyli wartość tę musimy pomnożyć przez 2k-1. Jest to oszacowanie z pewnym nadmiarem – jeśli dany fragment jest jednoelementowy, to nie trzeba go odwracać (im większe k, tym więcej będzie takich elementów, zatem dla dużych k czynnik ten będzie zanikał).

Podsumowując, mamy do sprawdzenia maksymalnie n!2k-1/(k(n-k)!) wariantów. Jest to złożoność rzędu O(nk), przy czym nawet dla dużych k złożoność nie przekroczy n!.

Biorąc pod uwagę, że złożoność algorytmu w zależności od k jest wykładnicza, w praktyce używa się tylko niewielkich wartości k, zazwyczaj 2 lub 3. Dla k=n wykonanie algorytmu byłoby tożsame ze sprawdzeniem wszystkich możliwych rozwiązań problemu komiwojażera.

Ocena: 0 Tak Nie
Liczba głosów: 0.

Dodano: 17 czerwca 2017 15:20, ostatnia edycja: 17 czerwca 2017 16:08.

REKLAMA

Zobacz też

Przeszukiwanie w głąb (ang. depth-first search, w skrócie DFS) – jeden z dwóch podstawowych algorytmów przeszukiwania grafu. Polega na przechodzeniu zawsze do kolejnego nieodwiedzonego wierzchołka. Jeśli dany wierzchołek nie ma nieodwiedzonych sąsiadów, wracamy do poprzedniego wierzchołka i sprawdzamy jego sąsiadów. Mówiąc obrazowo, w algorytmie tym wchodzimy tak głęboko, jak to możliwe (przechodzimy dalej, dopóki się da).

Algorytm można zapisać w sposób rekurencyjny. Wywoływana rekurencyjnie procedura działa następująco: oznacz wierzchołek jako odwiedzony, a następnie wywołaj tę procedurę dla każdego sąsiada danego wierzchołka, jeśli nie został on wcześniej odwiedzony. Na początku wywołujemy procedurę dla wierzchołka początkowego.

→ Czytaj całość

Algorytm Johnsona – algorytm służący do wyznaczania najkrótszych ścieżek pomiędzy każdą parą wierzchołków w grafie. Algorytm wykorzystuje algorytm Dijkstry i algorytm Bellmana-Forda. Dopuszcza krawędzie o ujemnych wagach, o ile nie tworzą ujemnych cykli.

Złożoność czasowa algorytmu (jeśli algorytm Dijkstry zostanie zaimplementowany z wykorzystaniem kopca Fibonacciego) to O(n2log n + en), gdzie n jest liczbą wierzchołków, a e jest liczbą krawędzi. Dla grafów rzadkich (ze stosunkowo małą liczbą krawędzi) jest to złożoność lepsza, niż złożoność algorytmu Floyda-Warshalla.

→ Czytaj całość

Metoda przyrostowa – technika projektowania algorytmów polegająca na dodawaniu do rozwiązania kolejnych elementów z danych wejściowych. Przykładem algorytmu opartego na tej metodzie jest sortowanie przez wstawianie, gdzie kolejne elementy są wstawiane do posortowanej części tablicy.

Jest to metoda prosta, jednak sprawdza się tylko dla niektórych problemów obliczeniowych.

→ Czytaj całość
Polityka prywatnościKontakt