K-opt

2-opt przykład (1) Przykładowe wykonanie algorytmu 2-optymalnego
3-opt przykład (2) 8 sposobów połączenia ze sobą 3 fragmentów cyklu (jeden krok algorytmu 3-opt)

K-opt, algorytm k-optymalny – algorytm lokalnej optymalizacji wykorzystywany przy rozwiązywaniu problemu komiwojażera. Algorytm ten nie służy do samego wyznaczania trasy, a jedynie do ulepszania jej. Najprostszą wersją tego algorytmu jest algorytm 2-optymalny.

Działanie algorytmu

Algorytm polega na usuwaniu z cyklu k krawędzi i zastępowaniu ich innymi krawędziami tak, aby utworzyć inny prawidłowy cykl. Jeśli osiągnięte w ten sposób rozwiązanie jest lepsze od dotychczas znalezionego, zapamiętujemy je. Za każdym razem modyfikujemy cykl początkowy (nie rozwiązanie z poprzedniego kroku).

Usunięcie z cyklu k krawędzi sprawia, że cykl zostaje podzielony na k fragmentów. Należy sprawdzić wszystkie możliwości połączenia tych fragmentów w całość. Taki krok algorytmu należy powtórzyć dla każdej k-elementowej grupy krawędzi.

Algorytm można wykonywać kilkakrotnie, aż do momentu, w którym żadna modyfikacja nie spowoduje skrócenia trasy. W ten sposób osiągnięte zostanie minimum lokalne.

Złożoność obliczeniowa

Załóżmy, że mamy cykl liczący n krawędzi. Jeśli chcemy usunąć z niego k krawędzi, to możemy uczynić to na n!/(k!(n-k)!) sposobów (kombinacja z n po k). Dla każdej kombinacji musimy sprawdzić wszystkie możliwości połączenia fragmentów cyklu w inny sposób. Fragmenty te możemy ustawić w różnej kolejności na (k-1)! sposobów. Dodatkowo każdy fragment można odwrócić, czyli wartość tę musimy pomnożyć przez 2k-1. Jest to oszacowanie z pewnym nadmiarem – jeśli dany fragment jest jednoelementowy, to nie trzeba go odwracać (im większe k, tym więcej będzie takich elementów, zatem dla dużych k czynnik ten będzie zanikał).

Podsumowując, mamy do sprawdzenia maksymalnie n!2k-1/(k(n-k)!) wariantów. Jest to złożoność rzędu O(nk), przy czym nawet dla dużych k złożoność nie przekroczy n!.

Biorąc pod uwagę, że złożoność algorytmu w zależności od k jest wykładnicza, w praktyce używa się tylko niewielkich wartości k, zazwyczaj 2 lub 3. Dla k=n wykonanie algorytmu byłoby tożsame ze sprawdzeniem wszystkich możliwych rozwiązań problemu komiwojażera.

Ocena: 0 Tak Nie
Liczba głosów: 0.

Dodano: 17 czerwca 2017 15:20, ostatnia edycja: 17 czerwca 2017 16:08.

REKLAMA

Zobacz też

Algorytm Bellmana-Forda – algorytm służący do wyznaczania najkrótszych ścieżek w grafie. Wyznacza najkrótsze ścieżki z jednego wierzchołka (zwanego wierzchołkiem źródłowym) do pozostałych wierzchołków. W odróżnieniu od algorytmu Dijkstry, algorytm Bellmana-Forda dopuszcza krawędzie o ujemnych wagach, nie mogą istnieć jednak ujemne cykle osiągalne z wierzchołka źródłowego. Algorytm może być również wykorzystywany do sprawdzania, czy w grafie występują ujemne cykle.

Algorytm występuje również pod nazwą algorytm Bellmana-Forda-Moore’a.

→ Czytaj całość

Wyznaczanie maksymalnego przepływu – problem obliczeniowy polegający na wyznaczeniu maksymalnego przepływu w sieci przepływowej.

Sieć przepływowa jest skierowanym grafem prostym. Każdy łuk (krawędź skierowana w grafie) ma swoją nieujemną wagę, która oznacza maksymalny dopuszczalny przepływ w tym łuku. Na potrzeby tego artykułu nazwijmy rzeczy przepływające przez sieć danymi. Jeden z wierzchołków sieci jest źródłem, z którego wypływają przesyłane dane. Inny z wierzchołków to ujście, do którego te dane wpływają. Zakłada się ponadto, że dla każdego z pozostałych wierzchołków istnieje ścieżka ze źródła do ujścia przechodząca przez ten wierzchołek.

Przepływem w sieci nazywamy przyporządkowanie każdemu łukowi pewnej wartości, która oznacza liczbę danych aktualnie przesyłanych przez ten łuk. Wartości te muszą spełniać następujące warunki:

  • Wartość przyporządkowana krawędzi musi być mniejsza lub równa jej wadze (warunek przepustowości).
  • Do każdego wierzchołka (poza źródłem i ujściem) musi wpływać tyle samo danych, ile z niego wypływa (warunek zachowania przepływu).

Omawiany problem polega na dobraniu takiego przepływu, aby liczba danych wypływających ze źródła (i zarazem wpływających do ujścia) była jak największa.

→ Czytaj całość

Metoda przyrostowa – technika projektowania algorytmów polegająca na dodawaniu do rozwiązania kolejnych elementów z danych wejściowych. Przykładem algorytmu opartego na tej metodzie jest sortowanie przez wstawianie, gdzie kolejne elementy są wstawiane do posortowanej części tablicy.

Jest to metoda prosta, jednak sprawdza się tylko dla niektórych problemów obliczeniowych.

→ Czytaj całość
Polityka prywatnościKontakt