Algorytm rozpoczyna działanie od wybranego wierzchołka (nazwijmy go wierzchołkiem początkowym) i polega na kolejnym przechodzeniu do najbliższego nieodwiedzonego sąsiada ostatnio dodanego wierzchołka. W bardziej formalnym zapisie algorytm działa w następujący sposób:
Dla grafu pełnego algorytm ma złożoność czasową rzędu kwadratowego. Złożoność pamięciowa algorytmu jest bardzo niewielka (warto pamiętać jedynie, które wierzchołki zostały już odwiedzone).
Dla problemu komiwojażera nie jest znany wydajny (tj. działający w czasie co najwyżej wielomianowym) algorytm dający gwarancję znalezienia rozwiązania optymalnego. Algorytm najbliższego sąsiada również nie daje zatem gwarancji znalezienia najlepszego z możliwych rozwiązań. Według pracy [2] rozwiązania znalezione przez ten algorytm są średnio o ok. 25% gorsze od optymalnych. Istnieją nawet takie przypadki, w których algorytm najbliższego sąsiada daje najgorsze możliwe rozwiązanie – przykład takiej sytuacji przedstawiono na ilustracji (3).
Można łatwo zauważyć, że rozwiązania uzyskane za pomocą algorytmu najbliższego sąsiada mogą różnić się od siebie w zależności od wyboru wierzchołka początkowego. Zaprezentowano to w animacjach (1) i (2). W pierwszym przypadku wierzchołkiem początkowym jest ten znajdujący się najbliżej środka, w drugim ten znajdujący się w lewym dolnym rogu.
Modyfikacją algorytmu najbliższego sąsiada jest algorytm funkcjonujący w anglojęzycznej literaturze jako repetitive NN. Polega on na wykonaniu algorytmu najbliższego sąsiada dla każdego wierzchołka początkowego i wybraniu najlepszego z uzyskanych rozwiązań.
Dodano: 26 września 2016 17:25, ostatnia edycja: 30 stycznia 2019 13:16.
2-opt, algorytm 2-optymalny – algorytm lokalnej optymalizacji wykorzystywany przy rozwiązywaniu problemu komiwojażera. Jest to szczególny przypadek algorytmu k-optymalnego.
Algorytm 2-opt nie służy do wyznaczania trasy, a jedynie do ulepszania jej. Samą trasę można wyznaczyć np. za pomocą algorytmu najbliższego sąsiada. Algorytm może być wykorzystany do ulepszenia algorytmu genetycznego – w ten sposób powstanie algorytm memetyczny.
Matroid – struktura matematyczna składająca się z niepustego zbioru elementów E i takiej rodziny jego podzbiorów I, że spełnione są następujące warunki:
Drugi warunek, zwany własnością wymiany, formalnie może być zapisany jako:
$$⋀↙{A,B∊I}↙{ |A|>|B| }⋁↙{t∊(A-B)} B∪\{t\} ∈ I$$Co istotne, rodzina zbiorów I nie musi zawierać wszystkich możliwych podzbiorów zbioru E. Ważne tylko, aby była spełniona własność wymiany. Przykładowo, dla E={a,b,c,d} prawidłową rodziną I, może być zarówno { {a,b}, {b,c}, {a}, {b}, {c}, ∅}, jak i { {a}, {b}, {c}, {d}, ∅}. Trywialnym przypadkiem poprawnego matroidu jest taki, w którym rodzina I zawiera jedynie zbiór pusty.
Metoda Forda-Fulkersona – algorytm służący do wyznaczania maksymalnego przepływu. Jest to algorytm bardzo ogólny, dlatego często nie jest nazywany algorytmem, a metodą. Popularną implementacją tej metody jest algorytm Edmondsa-Karpa. Algorytm można opisać następująco: