Algorytm najbliższego sąsiada

Algorytm najbliższego sąsiada animacja (1) Przykładowe wykonanie algorytmu
Algorytm najbliższego sąsiada animacja 2 (2) Przykładowe wykonanie algorytmu dla innego wierzchołka początkowego
Punkty w jednej linii (3) Przykład grafu, dla którego algorytm najbliższego sąsiada zwróci najgorsze możliwe rozwiązanie. Jeśli B będzie wierzchołkiem początkowym, to algorytm zwróci cykl B-C-A-D-B o długości 16. Tymczasem pozostałe rozwiązania (B-A-C-D-B i B-C-D-A-B) mają długość 12
Algorytm najbliższego sąsiada (ang. nearest neighbour algorithm, w skrócie NN) – algorytm służący do rozwiązywania problemu komiwojażera. Jest to algorytm wykorzystujący strategię zachłanną.

Działanie algorytmu

Algorytm rozpoczyna działanie od wybranego wierzchołka (nazwijmy go wierzchołkiem początkowym) i polega na kolejnym przechodzeniu do najbliższego nieodwiedzonego sąsiada ostatnio dodanego wierzchołka. W bardziej formalnym zapisie algorytm działa w następujący sposób:

  1. Wierzchołek początkowy oznaczamy jako odwiedzony i ustawiamy jako aktualny.
  2. Znajdujemy najkrótszą spośród krawędzi łączących aktualny wierzchołek z jeszcze nieodwiedzonymi wierzchołkami.
  3. Dołączamy do rozwiązania krawędź znalezioną w punkcie 2.
  4. Wierzchołek będący drugim końcem krawędzi znalezionej w punkcie 2 oznaczamy jako odwiedzony i ustawiamy jako aktualny.
  5. Jeśli są jeszcze nieodwiedzone wierzchołki, przechodzimy do punktu 2.
  6. Dołączamy krawędź łączącą ostatnio dodany wierzchołek z wierzchołkiem początkowym. Zamykamy w ten sposób cykl.

Złożoność i ocena jakości

Dla grafu pełnego algorytm ma złożoność czasową rzędu kwadratowego. Złożoność pamięciowa algorytmu jest bardzo niewielka (warto pamiętać jedynie, które wierzchołki zostały już odwiedzone).

Dla problemu komiwojażera nie jest znany wydajny (tj. działający w czasie co najwyżej wielomianowym) algorytm dający gwarancję znalezienia rozwiązania optymalnego. Algorytm najbliższego sąsiada również nie daje zatem gwarancji znalezienia najlepszego z możliwych rozwiązań. Według pracy [2] rozwiązania znalezione przez ten algorytm są średnio o ok. 25% gorsze od optymalnych. Istnieją nawet takie przypadki, w których algorytm najbliższego sąsiada daje najgorsze możliwe rozwiązanie – przykład takiej sytuacji przedstawiono na ilustracji (3).

Można łatwo zauważyć, że rozwiązania uzyskane za pomocą algorytmu najbliższego sąsiada mogą różnić się od siebie w zależności od wyboru wierzchołka początkowego. Zaprezentowano to w animacjach (1) i (2). W pierwszym przypadku wierzchołkiem początkowym jest ten znajdujący się najbliżej środka, w drugim ten znajdujący się w lewym dolnym rogu.

Algorytm RNN

Modyfikacją algorytmu najbliższego sąsiada jest algorytm funkcjonujący w anglojęzycznej literaturze jako repetitive NN. Polega on na wykonaniu algorytmu najbliższego sąsiada dla każdego wierzchołka początkowego i wybraniu najlepszego z uzyskanych rozwiązań.

Bibliografia

Ocena: +1 Tak Nie
Liczba głosów: 1.

Dodano: 26 września 2016 17:25, ostatnia edycja: 30 stycznia 2019 13:16.

REKLAMA

Zobacz też

Programowanie dynamiczne – technika projektowania algorytmów polegająca na rozwiązywaniu podproblemów i zapamiętywaniu ich wyników. W technice tej, podobnie jak w metodzie dziel i zwyciężaj, problem dzielony jest na mniejsze podproblemy. Wyniki rozwiązywania podproblemów są jednak zapisywane w tabeli, dzięki czemu w przypadku natrafienia na ten sam podproblem nie trzeba go ponownie rozwiązywać.

Wykorzystując programowanie dynamiczne można zastosować metodę zstępującą z zapamiętywaniem lub metodę wstępującą.

  • Metoda zstępująca z zapamiętywaniem polega na rekurencyjnym wywoływaniu funkcji z zapamiętywaniem wyników. Metoda ta jest podobna do metody dziel i zwyciężaj – różni się od niej tym, że jeśli rozwiązanie danego problemu jest już w tabeli z wynikami, to należy je po prostu stamtąd odczytać.
  • Metoda wstępująca polega na rozwiązywaniu wszystkich możliwych podproblemów, zaczynając od tych o najmniejszym rozmiarze. Wówczas w momencie rozwiązywania podproblemu na pewno są już dostępne rozwiązania jego podproblemów. W tym podejściu nie zużywa się pamięci na rekurencyjne wywołania funkcji. Może się jednak okazać, że część podproblemów została rozwiązana nadmiarowo (nie były one potrzebne do rozwiązania głównego problemu).
→ Czytaj całość

Metoda przyrostowa – technika projektowania algorytmów polegająca na dodawaniu do rozwiązania kolejnych elementów z danych wejściowych. Przykładem algorytmu opartego na tej metodzie jest sortowanie przez wstawianie, gdzie kolejne elementy są wstawiane do posortowanej części tablicy.

Jest to metoda prosta, jednak sprawdza się tylko dla niektórych problemów obliczeniowych.

→ Czytaj całość

Algorytm Dijkstry – algorytm służący do wyznaczania najkrótszych ścieżek w grafie. Wyznacza najkrótsze ścieżki z jednego wierzchołka (zwanego wierzchołkiem źródłowym) do pozostałych wierzchołków. Algorytm wymaga, aby wagi krawędzi grafu nie były ujemne. Autorem algorytmu jest holenderski naukowiec Edsger Dijkstra.

Algorytm realizuje podejście zachłanne. W każdej iteracji wybierany jest ten spośród nieodwiedzonych wierzchołków, do którego można dotrzeć najmniejszym kosztem. Po wyznaczeniu ścieżki do konkretnego wierzchołka nie zostanie ona zmodyfikowana w trakcie wykonywania dalszej części algorytmu.

→ Czytaj całość
Polityka prywatnościKontakt