Algorytm najbliższego sąsiada

Algorytm najbliższego sąsiada animacja (1) Przykładowe wykonanie algorytmu
Algorytm najbliższego sąsiada animacja 2 (2) Przykładowe wykonanie algorytmu dla innego wierzchołka początkowego
Punkty w jednej linii (3) Przykład grafu, dla którego algorytm najbliższego sąsiada zwróci najgorsze możliwe rozwiązanie. Jeśli B będzie wierzchołkiem początkowym, to algorytm zwróci cykl B-C-A-D-B o długości 16. Tymczasem pozostałe rozwiązania (B-A-C-D-B i B-C-D-A-B) mają długość 12
Algorytm najbliższego sąsiada (ang. nearest neighbour algorithm, w skrócie NN) – algorytm służący do rozwiązywania problemu komiwojażera. Jest to algorytm wykorzystujący strategię zachłanną.

Działanie algorytmu

Algorytm rozpoczyna działanie od wybranego wierzchołka (nazwijmy go wierzchołkiem początkowym) i polega na kolejnym przechodzeniu do najbliższego nieodwiedzonego sąsiada ostatnio dodanego wierzchołka. W bardziej formalnym zapisie algorytm działa w następujący sposób:

  1. Wierzchołek początkowy oznaczamy jako odwiedzony i ustawiamy jako aktualny.
  2. Znajdujemy najkrótszą spośród krawędzi łączących aktualny wierzchołek z jeszcze nieodwiedzonymi wierzchołkami.
  3. Dołączamy do rozwiązania krawędź znalezioną w punkcie 2.
  4. Wierzchołek będący drugim końcem krawędzi znalezionej w punkcie 2 oznaczamy jako odwiedzony i ustawiamy jako aktualny.
  5. Jeśli są jeszcze nieodwiedzone wierzchołki, przechodzimy do punktu 2.
  6. Dołączamy krawędź łączącą ostatnio dodany wierzchołek z wierzchołkiem początkowym. Zamykamy w ten sposób cykl.

Złożoność i ocena jakości

Dla grafu pełnego algorytm ma złożoność czasową rzędu kwadratowego. Złożoność pamięciowa algorytmu jest bardzo niewielka (warto pamiętać jedynie, które wierzchołki zostały już odwiedzone).

Dla problemu komiwojażera nie jest znany wydajny (tj. działający w czasie co najwyżej wielomianowym) algorytm dający gwarancję znalezienia rozwiązania optymalnego. Algorytm najbliższego sąsiada również nie daje zatem gwarancji znalezienia najlepszego z możliwych rozwiązań. Według pracy [2] rozwiązania znalezione przez ten algorytm są średnio o ok. 25% gorsze od optymalnych. Istnieją nawet takie przypadki, w których algorytm najbliższego sąsiada daje najgorsze możliwe rozwiązanie – przykład takiej sytuacji przedstawiono na ilustracji (3).

Można łatwo zauważyć, że rozwiązania uzyskane za pomocą algorytmu najbliższego sąsiada mogą różnić się od siebie w zależności od wyboru wierzchołka początkowego. Zaprezentowano to w animacjach (1) i (2). W pierwszym przypadku wierzchołkiem początkowym jest ten znajdujący się najbliżej środka, w drugim ten znajdujący się w lewym dolnym rogu.

Algorytm RNN

Modyfikacją algorytmu najbliższego sąsiada jest algorytm funkcjonujący w anglojęzycznej literaturze jako repetitive NN. Polega on na wykonaniu algorytmu najbliższego sąsiada dla każdego wierzchołka początkowego i wybraniu najlepszego z uzyskanych rozwiązań.

Bibliografia

Ocena: +1 Tak Nie
Liczba głosów: 1.

Dodano: 26 września 2016 17:25, ostatnia edycja: 30 stycznia 2019 13:16.

REKLAMA

Zobacz też

Algorytm heurystyczny, heurystyka – algorytm niedający (w ogólnym przypadku) gwarancji znalezienia rozwiązania optymalnego, umożliwiający jednak znalezienie rozwiązania dość dobrego w rozsądnym czasie. Algorytmy tego typu używane są w takich problemach obliczeniowych, gdzie znalezienie rozwiązania optymalnego ma zbyt dużą złożoność obliczeniową (w szczególności są to problemy NP-trudne) lub w ogóle nie jest możliwe.

Pojęcie algorytmów heurystycznych jest bardzo szerokie, dotyczy ono różnych technik projektowania algorytmów. Wiele heurystyk wykorzystuje losowość, inne zaś są deterministyczne (wówczas dla takich samych danych wejściowych algorytm zawsze zwróci ten sam wynik).

Ogólny algorytm heurystyczny (opisujący samą ideę poszukiwań) bywa określany w literaturze jako metaheurystyka. Zgodnie z tym nazewnictwem, metaheurystyką jest np. algorytm zachłanny (jako ogólna idea), zaś heurystyką jest np. algorytm najbliższego sąsiada (jako zastosowanie idei algorytmu zachłannego do konkretnego problemu).

→ Czytaj całość

Metoda Otsu – algorytm służący do binaryzacji obrazu, czyli przekształcenia obrazu w odcieniach szarości do obrazu binarnego. Metoda ta realizuje progowanie globalne – dla całego obrazu wyznaczany jest jeden próg jasności, a następnie wszystkim pikselom jaśniejszym od tego progu przypisywana jest jedna wartość, a ciemniejszym druga.

Algorytm jest oparty na analizie histogramu. Przygotowanie histogramu polega na zliczeniu pikseli w każdym możliwym odcieniu (zazwyczaj liczba odcieni wynosi 256, gdyż tyle da się zakodować w jednym bajcie). Następnie należy sprawdzić każdy możliwy próg jasności i wybrać ten, dla którego wariancja międzyklasowa jest największa (lub suma ważona wariancji wewnątrzklasowych jest najmniejsza).

Jeśli obrazem wejściowym jest obraz kolorowy, można go łatwo sprowadzić do odcieni szarości. W przypadku kolorów zakodowanych w RGB najprostszym rozwiązaniem jest uśrednienie dla każdego piksela wartości wszystkich trzech kanałów.

→ Czytaj całość

Sortowanie – zagadnienie polegające na uporządkowaniu elementów zbioru rosnąco lub malejąco według pewnego klucza. Zagadnienie to, ze względu na częstość występowania, jest bardzo istotne dla informatyki. Istnieje wiele różnych algorytmów realizujących sortowanie.

→ Czytaj całość
Polityka prywatnościKontakt