Algorytm najbliższego sąsiada

Algorytm najbliższego sąsiada animacja (1) Przykładowe wykonanie algorytmu
Algorytm najbliższego sąsiada animacja 2 (2) Przykładowe wykonanie algorytmu dla innego wierzchołka początkowego
Punkty w jednej linii (3) Przykład grafu, dla którego algorytm najbliższego sąsiada zwróci najgorsze możliwe rozwiązanie. Jeśli B będzie wierzchołkiem początkowym, to algorytm zwróci cykl B-C-A-D-B o długości 16. Tymczasem pozostałe rozwiązania (B-A-C-D-B i B-C-D-A-B) mają długość 12
Algorytm najbliższego sąsiada (ang. nearest neighbour algorithm, w skrócie NN) – algorytm służący do rozwiązywania problemu komiwojażera. Jest to algorytm wykorzystujący strategię zachłanną.

Działanie algorytmu

Algorytm rozpoczyna działanie od wybranego wierzchołka (nazwijmy go wierzchołkiem początkowym) i polega na kolejnym przechodzeniu do najbliższego nieodwiedzonego sąsiada ostatnio dodanego wierzchołka. W bardziej formalnym zapisie algorytm działa w następujący sposób:

  1. Wierzchołek początkowy oznaczamy jako odwiedzony i ustawiamy jako aktualny.
  2. Znajdujemy najkrótszą spośród krawędzi łączących aktualny wierzchołek z jeszcze nieodwiedzonymi wierzchołkami.
  3. Dołączamy do rozwiązania krawędź znalezioną w punkcie 2.
  4. Wierzchołek będący drugim końcem krawędzi znalezionej w punkcie 2 oznaczamy jako odwiedzony i ustawiamy jako aktualny.
  5. Jeśli są jeszcze nieodwiedzone wierzchołki, przechodzimy do punktu 2.
  6. Dołączamy krawędź łączącą ostatnio dodany wierzchołek z wierzchołkiem początkowym. Zamykamy w ten sposób cykl.

Złożoność i ocena jakości

Dla grafu pełnego algorytm ma złożoność czasową rzędu kwadratowego. Złożoność pamięciowa algorytmu jest bardzo niewielka (warto pamiętać jedynie, które wierzchołki zostały już odwiedzone).

Dla problemu komiwojażera nie jest znany wydajny (tj. działający w czasie co najwyżej wielomianowym) algorytm dający gwarancję znalezienia rozwiązania optymalnego. Algorytm najbliższego sąsiada również nie daje zatem gwarancji znalezienia najlepszego z możliwych rozwiązań. Według pracy [2] rozwiązania znalezione przez ten algorytm są średnio o ok. 25% gorsze od optymalnych. Istnieją nawet takie przypadki, w których algorytm najbliższego sąsiada daje najgorsze możliwe rozwiązanie – przykład takiej sytuacji przedstawiono na ilustracji (3).

Można łatwo zauważyć, że rozwiązania uzyskane za pomocą algorytmu najbliższego sąsiada mogą różnić się od siebie w zależności od wyboru wierzchołka początkowego. Zaprezentowano to w animacjach (1) i (2). W pierwszym przypadku wierzchołkiem początkowym jest ten znajdujący się najbliżej środka, w drugim ten znajdujący się w lewym dolnym rogu.

Algorytm RNN

Modyfikacją algorytmu najbliższego sąsiada jest algorytm funkcjonujący w anglojęzycznej literaturze jako repetitive NN. Polega on na wykonaniu algorytmu najbliższego sąsiada dla każdego wierzchołka początkowego i wybraniu najlepszego z uzyskanych rozwiązań.

Bibliografia

Ocena: +5 Tak Nie
Liczba głosów: 5.

Dodano: 26 września 2016 17:25, ostatnia edycja: 30 stycznia 2019 13:16.

REKLAMA

Zobacz też

Problem komiwojażera (ang. travelling salesman problem, w skrócie TSP) – problem obliczeniowy polegający na poszukiwaniu w grafie takiego cyklu, który zawiera wszystkie wierzchołki (każdy dokładnie raz) i ma jak najmniejszy koszt. Bardziej formalnie, problem komiwojażera polega na poszukiwaniu w grafie cyklu Hammiltona o najmniejszej wadze.

Problem ma liczne zastosowania w życiu codziennym. Najlepszym przykładem jest praca kuriera, który musi wyjechać z magazynu, zawieźć przesyłki w różne miejsca i wrócić do magazynu.

Nie jest znany efektywny (tj. działający w czasie co najwyżej wielomianowym) algorytm dający gwarancję znalezienia optymalnego rozwiązania problemu komiwojażera. Problem ten jest bowiem zaliczany do klasy problemów NP-trudnych. W wersji decyzyjnej (czy istnieje cykl o długości mniejszej od x) problem jest zaliczany do klasy problemów NP-zupełnych. W grafie pełnym mającym n wierzchołków liczba możliwych cykli Hammiltona wynosi aż (n-1)!/2. W praktyce sprawdzenie wszystkich możliwości jest zatem wykonalne tylko dla niewielkiej liczby wierzchołków.

→ Czytaj całość

Ten artykuł opisuje algorytm zachłanny rozwiązujący problem wydawania reszty. Algorytm ten polega na wybieraniu zawsze największej dostępnej monety, tzn. takiej, która nie jest większa od kwoty pozostałej do wydania.

Algorytm nie zawsze znajduje rozwiązanie optymalne. Przykładowo, dla zbioru nominałów {1, 3, 4} i kwoty 6 algorytm użyje najpierw monety o nominale 4 (pozostaje do wydania kwota 2), potem monety o nominale 1 (pozostaje kwota 1) i jeszcze raz monety o nominale 1. Łącznie algorytm użyje więc trzech monet, podczas gdy rozwiązanie optymalne wymaga użycia tylko dwóch (dwie monety o nominale 3).

→ Czytaj całość

Kolejka (ang. Queue) – struktura danych, w której elementy pobierane są z początku, a dodawane na końcu. Z kolejki można zatem pobrać tylko ten element, który był dodany najwcześniej. Kolejka bywa określana również jako kolejka FIFO (z ang. First In, First Out), w odróżnieniu od kolejki LIFO, czyli stosu.

→ Czytaj całość
Polityka prywatnościKontakt