Algorytmy. Ćwiczenia
34,90 zł
Projektowanie systemów rozproszonych. Wzorce i paradygmaty dla skalowalnych, niezawodnych usług
−30%27,93 zł
PHP 7. Algorytmy i struktury danych
59,00 zł
Java. Kompendium programisty. Wydanie X
179,00 zł
Opus magnum C++11. Programowanie w języku C++ (komplet)
149,00 zł
Uczenie maszynowe z użyciem Scikit-Learn i TensorFlow
89,00 zł

Algorytm najbliższego sąsiada

Algorytm najbliższego sąsiada animacja Przykładowe wykonanie algorytmu
Algorytm najbliższego sąsiada animacja 2 Przykładowe wykonanie algorytmu dla innego wierzchołka początkowego
Punkty w jednej linii Przykład grafu, dla którego algorytm najbliższego sąsiada zwróci najgorsze możliwe rozwiązanie. Jeśli B będzie wierzchołkiem początkowym, to algorytm zwróci cykl B-C-A-D-B o długości 16. Tymczasem pozostałe rozwiązania (B-A-C-D-B i B-C-D-A-B) mają długość 12
Algorytm najbliższego sąsiada (ang. nearest neighbour algorithm, w skrócie NN) – algorytm służący do rozwiązywania problemu komiwojażera. Jest to algorytm wykorzystujący strategię zachłanną.

Działanie algorytmu

Algorytm rozpoczyna działanie od wybranego wierzchołka (nazwijmy go wierzchołkiem początkowym) i polega na kolejnym przechodzeniu do najbliższego nieodwiedzonego sąsiada ostatnio dodanego wierzchołka. W bardziej formalnym zapisie algorytm działa w następujący sposób:

  1. Wierzchołek początkowy oznaczamy jako odwiedzony i ustawiamy jako aktualny.
  2. Znajdujemy najkrótszą spośród krawędzi łączących aktualny wierzchołek z jeszcze nieodwiedzonymi wierzchołkami.
  3. Dołączamy do rozwiązania krawędź znalezioną w punkcie 2.
  4. Wierzchołek będący drugim końcem krawędzi znalezionej w punkcie 2 oznaczamy jako odwiedzony i ustawiamy jako aktualny.
  5. Jeśli są jeszcze nieodwiedzone wierzchołki, przechodzimy do punktu 2.
  6. Dołączamy krawędź łączącą ostatnio dodany wierzchołek z wierzchołkiem początkowym. Zamykamy w ten sposób cykl.

Złożoność i ocena jakości

Dla grafu pełnego algorytm ma złożoność czasową rzędu kwadratowego. Złożoność pamięciowa algorytmu jest bardzo niewielka (warto pamiętać jedynie, które wierzchołki zostały już odwiedzone).

Dla problemu komiwojażera nie jest znany wydajny (tj. działający w czasie co najwyżej wielomianowym) algorytm dający gwarancję znalezienia rozwiązania optymalnego. Algorytm najbliższego sąsiada również nie daje zatem gwarancji znalezienia najlepszego z możliwych rozwiązań. Według pracy The Traveling Salesman Problem: A Case Study in Local Optimization (link w bibliografii) rozwiązania znalezione przez ten algorytm są średnio o ok. 25% gorsze od optymalnych. Istnieją nawet takie przypadki, w których algorytm najbliższego sąsiada daje najgorsze możliwe rozwiązanie.

Można łatwo zauważyć, że rozwiązania uzyskane za pomocą algorytmu najbliższego sąsiada mogą różnić się od siebie w zależności od wyboru wierzchołka początkowego. Zaprezentowano to na obrazkach znajdujących się po prawej stronie artykułu. W pierwszym przypadku wierzchołkiem początkowym jest ten znajdujący się najbliżej środka, w drugim ten znajdujący się w lewym dolnym rogu.

Algorytm RNN

Modyfikacją algorytmu najbliższego sąsiada jest algorytm funkcjonujący w anglojęzycznej literaturze jako repetitive NN. Polega on na wykonaniu algorytmu najbliższego sąsiada dla każdego wierzchołka początkowego i wybraniu najlepszego z uzyskanych rozwiązań.

Bibliografia

  1. Z.J. Czech, S. Deorowicz, P. Fabian, Algorytmy i struktury danych. Wybrane zagadnienia, Wydawnictwo Politechniki Śląskiej, Gliwice, 2010.
  2. D.S. Johnson, L.A. McGeoch, The Traveling Salesman Problem: A Case Study in Local Optimization (link) [dostęp: 21 listopada 2017].
  3. G. Gutin, A. Yeo, A. Zverovich, Traveling salesman should not be greedy: domination analysis of greedy-type heuristics for the TSP (link) [dostęp: 21 listopada 2017].
Ocena: +1 Tak Nie
Liczba głosów: 1.

Dodano: 26 września 2016 17:25, ostatnia edycja: 21 listopada 2017 19:08.

REKLAMA

Zobacz też

Ten artykuł opisuje algorytm rozwiązujący problem wydawania reszty oparty na programowaniu dynamicznym. Algorytm ten daje gwarancję znalezienia rozwiązania optymalnego.

Istnieje również pewna modyfikacja tego algorytmu, która została opisana w osobnym artykule.

→ Czytaj całość

Algorytm Kruskala – algorytm wyznaczający minimalne drzewo rozpinające. Algorytm ten wykorzystuje strategię zachłanną.

→ Czytaj całość

Minimalne drzewo rozpinające (ang. minimum spanning tree, w skrócie MST), inaczej drzewo rozpinające o minimalnej wadze – drzewo łączące wszystkie wierzchołki pewnego grafu spójnego mające najmniejszą możliwą sumę wag krawędzi.

Jeśli graf ma v wierzchołków, to jego drzewo rozpinające zawsze będzie miało v-1 krawędzi. Jeśli ten graf ma e krawędzi, aby utworzyć drzewo rozpinające, trzeba usunąć z grafu e-v+1 krawędzi. Liczba ta jest określana jako liczba cyklomatryczna.

→ Czytaj całość
Polityka prywatnościKontakt