Algorytm Bellmana-Forda

Tutorial
Na ten temat mamy również tutorial „Algorytm Bellmana-Forda”, który ilustruje działanie algorytmu krok po kroku. Zapraszamy do zapoznania się z nim!
REKLAMA

English 4 IT. Praktyczny kurs języka angielskiego dla specjalistów IT i nie tylko
−40%29,94 zł
Algorytmy, struktury danych i techniki programowania. Wydanie VI
−40%35,40 zł

Algorytm Bellmana-Forda – algorytm służący do wyznaczania najkrótszych ścieżek w grafie. Wyznacza najkrótsze ścieżki z jednego wierzchołka (zwanego wierzchołkiem źródłowym) do pozostałych wierzchołków. W odróżnieniu od algorytmu Dijkstry, algorytm Bellmana-Forda dopuszcza krawędzie o ujemnych wagach, nie mogą istnieć jednak ujemne cykle osiągalne z wierzchołka źródłowego. Algorytm może być również wykorzystywany do sprawdzania, czy w grafie występują ujemne cykle.

Algorytm występuje również pod nazwą algorytm Bellmana-Forda-Moore’a.

Opis działania algorytmu

W trakcie wykonywania algorytmu dla każdego wierzchołka zostają wyznaczone dwie wartości: koszt dotarcia do tego wierzchołka (oznaczmy go jako di) oraz poprzedni wierzchołek na ścieżce (oznaczmy go jako pi). Na początku działania algorytmu dla wierzchołka źródłowego koszt dotarcia wynosi 0 (już tam jesteśmy), a dla każdego innego wierzchołka nieskończoność (w ogóle nie wiemy, jak się tam dostać).

Następnie dla każdej krawędzi (oznaczmy, że aktualnie analizowana krawędź ma wagę k i prowadzi z wierzchołka u do wierzchołka v) wykonujemy następującą czynność:

Jeżeli dv > du + k, to ustawiamy wartość dv na du + k, a wartość pv na u.

Całość (przejrzenie wszystkich krawędzi) należy powtórzyć n-1 razy, gdzie n jest liczbą wierzchołków. W każdej iteracji należy przejrzeć wszystkie krawędzie w tej samej kolejności. Jeśli w którejś iteracji nie nastąpią żadne zmiany, wykonywanie algorytmu można przerwać wcześniej.

Wykrywanie ujemnych cykli

Po zakończeniu działania algorytmu, dla każdej krawędzi powinna być spełniona nierówność: dvdu + k (k to waga krawędzi, krawędź prowadzi z wierzchołka u do v). Mówiąc inaczej, kolejna iteracja algorytmu nie powinna spowodować jakichkolwiek zmian. Jeśli ten warunek nie jest spełniony, to w grafie występuje ujemny cykl osiągalny z wierzchołka źródłowego.

Aby sprawdzić występowanie ujemnych pętli w całym grafie, należy dodać do grafu nowy wierzchołek, połączyć go krawędziami o zerowej wadze ze wszystkimi innymi wierzchołkami, a następnie wykonać algorytm traktując ten nowy wierzchołek jako wierzchołek źródłowy. Można również po prostu wykonać algorytm n razy (za każdym razem dla innego wierzchołka źródłowego), jednak zwiększyłoby to złożoność obliczeniową.

Złożoność czasowa

Dla grafu liczącego n wierzchołków i e krawędzi złożoność pesymistyczna jest równa O(en). Biorąc pod uwagę, że w przypadku braku krawędzi wielokrotnych liczba krawędzi jest zawsze mniejsza od n2, można powiedzieć, że złożoność czasowa algorytmu to O(n3).

Bibliografia

  • Z.J. Czech, S. Deorowicz, P. Fabian, Algorytmy i struktury danych. Wybrane zagadnienia, Wydawnictwo Politechniki Śląskiej, Gliwice, 2010, ISBN 9788373356689.
Ocena: +3 Tak Nie
Liczba głosów: 3.

Dodano: 30 marca 2017 19:25, ostatnia edycja: 30 stycznia 2019 15:38.

REKLAMA

Zobacz też

Sortowanie bąbelkowe (ang. bubble sort) – prosty algorytm sortowania polegający na porównywaniu za sobą sąsiednich elementów. Złożoności czasowa algorytmu wynosi O(n2).
→ Czytaj całość

Sortowanie przez wstawianie (ang. insertion sort) – prosty algorytm sortowania polegający na wstawianiu kolejnych elementów ciągu we właściwe miejsca. Złożoności czasowa algorytmu wynosi O(n2). Jest to algorytm realizujący metodę przyrostową.

→ Czytaj całość

Algorytm memetyczny – algorytm będący połączeniem algorytmu genetycznego i metod lokalnej optymalizacji. Czasami określany również jako hybrydowy algorytm ewolucyjny.

→ Czytaj całość
Polityka prywatnościKontakt