Algorytm Bellmana-Forda

Tutorial
Na ten temat mamy również tutorial „Algorytm Bellmana-Forda”, który ilustruje działanie algorytmu krok po kroku. Zapraszamy do zapoznania się z nim!
REKLAMA

Pragmatyczny programista. Od czeladnika do mistrza. Wydanie II
−30%53,90 zł
Algorytmy. Ćwiczenia
34,90 zł

Algorytm Bellmana-Forda – algorytm służący do wyznaczania najkrótszych ścieżek w grafie. Wyznacza najkrótsze ścieżki z jednego wierzchołka (zwanego wierzchołkiem źródłowym) do pozostałych wierzchołków. W odróżnieniu od algorytmu Dijkstry, algorytm Bellmana-Forda dopuszcza krawędzie o ujemnych wagach, nie mogą istnieć jednak ujemne cykle osiągalne z wierzchołka źródłowego. Algorytm może być również wykorzystywany do sprawdzania, czy w grafie występują ujemne cykle.

Algorytm występuje również pod nazwą algorytm Bellmana-Forda-Moore’a.

Opis działania algorytmu

W trakcie wykonywania algorytmu dla każdego wierzchołka zostają wyznaczone dwie wartości: koszt dotarcia do tego wierzchołka (oznaczmy go jako di) oraz poprzedni wierzchołek na ścieżce (oznaczmy go jako pi). Na początku działania algorytmu dla wierzchołka źródłowego koszt dotarcia wynosi 0 (już tam jesteśmy), a dla każdego innego wierzchołka nieskończoność (w ogóle nie wiemy, jak się tam dostać).

Następnie dla każdej krawędzi (oznaczmy, że aktualnie analizowana krawędź ma wagę k i prowadzi z wierzchołka u do wierzchołka v) wykonujemy następującą czynność:

Jeżeli dv > du + k, to ustawiamy wartość dv na du + k, a wartość pv na u.

Całość (przejrzenie wszystkich krawędzi) należy powtórzyć n-1 razy, gdzie n jest liczbą wierzchołków. W każdej iteracji należy przejrzeć wszystkie krawędzie w tej samej kolejności. Jeśli w którejś iteracji nie nastąpią żadne zmiany, wykonywanie algorytmu można przerwać wcześniej.

Wykrywanie ujemnych cykli

Po zakończeniu działania algorytmu, dla każdej krawędzi powinna być spełniona nierówność: dvdu + k (k to waga krawędzi, krawędź prowadzi z wierzchołka u do v). Mówiąc inaczej, kolejna iteracja algorytmu nie powinna spowodować jakichkolwiek zmian. Jeśli ten warunek nie jest spełniony, to w grafie występuje ujemny cykl osiągalny z wierzchołka źródłowego.

Aby sprawdzić występowanie ujemnych pętli w całym grafie, należy dodać do grafu nowy wierzchołek, połączyć go krawędziami o zerowej wadze ze wszystkimi innymi wierzchołkami, a następnie wykonać algorytm traktując ten nowy wierzchołek jako wierzchołek źródłowy. Można również po prostu wykonać algorytm n razy (za każdym razem dla innego wierzchołka źródłowego), jednak zwiększyłoby to złożoność obliczeniową.

Złożoność czasowa

Dla grafu liczącego n wierzchołków i e krawędzi złożoność pesymistyczna jest równa O(en). Biorąc pod uwagę, że w przypadku braku krawędzi wielokrotnych liczba krawędzi jest zawsze mniejsza od n2, można powiedzieć, że złożoność czasowa algorytmu to O(n3).

Bibliografia

  • Z.J. Czech, S. Deorowicz, P. Fabian, Algorytmy i struktury danych. Wybrane zagadnienia, Wydawnictwo Politechniki Śląskiej, Gliwice, 2010, ISBN 9788373356689.
Ocena: +1 Tak Nie
Liczba głosów: 1.

Dodano: 30 marca 2017 19:25, ostatnia edycja: 30 stycznia 2019 15:38.

REKLAMA

Zobacz też

Bogosort – bardzo słaby algorytm sortowania oparty na metodzie prób i błędów. Polega na ustawianiu elementów w losowej kolejności i sprawdzaniu, czy są posortowane. Średnia złożoność tego algorytmu jest rzędu silnia, a w przypadku pesymistycznym algorytm będzie działał w nieskończoność.

Algorytm występuje też w nieco ulepszonej wersji, w której nie sprawdza się wielokrotnie tego samego ustawienia. Wówczas algorytm daje gwarancję znalezienia rozwiązania, jednak jego złożoność czasowa nadal jest rzędu silnia (w przypadku pesymistycznym trzeba sprawdzić wszystkie permutacje zbioru).

Ze względu na bardzo dużą złożoność czasową bogosort nie nadaje się do praktycznych zastosowań. Istnieją proste w implementacji, a znacznie wydajniejsze algorytmy sortujące, np. sortowanie przez wstawianie.

→ Czytaj całość

Symulowane wyżarzanie – jedna z technik projektowania algorytmów heurystycznych (metaheurystyka). Cechą charakterystyczną tej metody jest występowanie parametru sterującego zwanego temperaturą, który maleje w trakcie wykonywania algorytmu. Im wyższą wartość ma ten parametr, tym bardziej chaotyczne mogą być zmiany. Podejście to jest inspirowane zjawiskami obserwowanymi w metalurgii – im większa temperatura metalu, tym bardziej jest on plastyczny.

Jest to metoda iteracyjna: najpierw losowane jest pewne rozwiązanie, a następnie jest ono w kolejnych krokach modyfikowane. Jeśli w danym kroku uzyskamy rozwiązanie lepsze, wybieramy je zawsze. Istotną cechą symulowanego wyżarzania jest jednak to, że z pewnym prawdopodobieństwem może być również zaakceptowane rozwiązanie gorsze (ma to na celu umożliwienie wyjście z maksimum lokalnego).

Prawdopodobieństwo przyjęcia gorszego rozwiązania wyrażone jest wzorem e(f(X)−f(X'))/T (rozkład Boltzmanna), gdzie X jest poprzednim rozwiązaniem, X' nowym rozwiązaniem, a f funkcją oceny jakości – im wyższa wartość f(X), tym lepsze rozwiązanie. Ze wzoru można zauważyć, że prawdopodobieństwo przyjęcia gorszego rozwiązania spada wraz ze spadkiem temperatury i wzrostem różnicy jakości obu rozwiązań.

→ Czytaj całość

Stos (ang. Stack) – struktura danych, w której bezpośredni dostęp jest tylko do ostatnio dodanego elementu. Stos bywa określany także jako kolejka LIFO (z ang. Last In, First Out, czyli: ostatni na wejściu, pierwszy na wyjściu). Stos można sobie wyobrazić jako kilka rzeczy ułożonych „jedna na drugiej” – łatwo można wziąć tylko rzecz leżącą na samym wierzchu, gdyż pozostałe są przykryte.

→ Czytaj całość
Polityka prywatnościKontakt