Algorytm Bellmana-Forda – algorytm służący do wyznaczania najkrótszych ścieżek w grafie. Wyznacza najkrótsze ścieżki z jednego wierzchołka (zwanego wierzchołkiem źródłowym) do pozostałych wierzchołków. W odróżnieniu od algorytmu Dijkstry, algorytm Bellmana-Forda dopuszcza krawędzie o ujemnych wagach, nie mogą istnieć jednak ujemne cykle osiągalne z wierzchołka źródłowego. Algorytm może być również wykorzystywany do sprawdzania, czy w grafie występują ujemne cykle.
Algorytm występuje również pod nazwą algorytm Bellmana-Forda-Moore’a.
W trakcie wykonywania algorytmu dla każdego wierzchołka zostają wyznaczone dwie wartości: koszt dotarcia do tego wierzchołka (oznaczmy go jako di) oraz poprzedni wierzchołek na ścieżce (oznaczmy go jako pi). Na początku działania algorytmu dla wierzchołka źródłowego koszt dotarcia wynosi 0 (już tam jesteśmy), a dla każdego innego wierzchołka nieskończoność (w ogóle nie wiemy, jak się tam dostać).
Następnie dla każdej krawędzi (oznaczmy, że aktualnie analizowana krawędź ma wagę k i prowadzi z wierzchołka u do wierzchołka v) wykonujemy następującą czynność:
Jeżeli dv > du + k, to ustawiamy wartość dv na du + k, a wartość pv na u.
Całość (przejrzenie wszystkich krawędzi) należy powtórzyć n-1 razy, gdzie n jest liczbą wierzchołków. W każdej iteracji należy przejrzeć wszystkie krawędzie w tej samej kolejności. Jeśli w którejś iteracji nie nastąpią żadne zmiany, wykonywanie algorytmu można przerwać wcześniej.
Po zakończeniu działania algorytmu, dla każdej krawędzi powinna być spełniona nierówność: dv ≤ du + k (k to waga krawędzi, krawędź prowadzi z wierzchołka u do v). Mówiąc inaczej, kolejna iteracja algorytmu nie powinna spowodować jakichkolwiek zmian. Jeśli ten warunek nie jest spełniony, to w grafie występuje ujemny cykl osiągalny z wierzchołka źródłowego.
Aby sprawdzić występowanie ujemnych pętli w całym grafie, należy dodać do grafu nowy wierzchołek, połączyć go krawędziami o zerowej wadze ze wszystkimi innymi wierzchołkami, a następnie wykonać algorytm traktując ten nowy wierzchołek jako wierzchołek źródłowy. Można również po prostu wykonać algorytm n razy (za każdym razem dla innego wierzchołka źródłowego), jednak zwiększyłoby to złożoność obliczeniową.
Dla grafu liczącego n wierzchołków i e krawędzi złożoność pesymistyczna jest równa O(en). Biorąc pod uwagę, że w przypadku braku krawędzi wielokrotnych liczba krawędzi jest zawsze mniejsza od n2, można powiedzieć, że złożoność czasowa algorytmu to O(n3).
Dodano: 30 marca 2017 19:25, ostatnia edycja: 30 stycznia 2019 15:38.
Dziel i zwyciężaj (ang. divide and conquer) – technika projektowania algorytmów polegająca na podejściu rekurencyjnym. W technice tej problem dzielony jest na mniejsze podproblemy, te podproblemy na jeszcze mniejsze podproblemy, aż dojdzie się do przypadków trywialnych (np. posortowanie jednoelementowej tablicy, obliczenie silni z 1).
Jeśli rozpatrywany problem wymaga podzielenia na podproblemy, jest on określany jako przypadek rekurencyjny. Jeśli mamy do czynienia z przypadkiem trywialnym, jest to przypadek bazowy. Tworząc algorytm wykorzystujący metodę dziel i zwyciężaj musimy ustalić:
Przykładem algorytmu opartego na tej metodzie jest sortowanie przez scalanie.
Metoda z zastosowaniem przepływu blokującego – algorytm wyznaczający maksymalny przepływ w sieci przepływowej. W algorytmie tym przepływ zwiększany jest iteracyjnie, w każdej iteracji wyznaczony przepływ jest powiększany o przepływ blokujący w warstwowej sieci residualnej.
Algorytm Zhanga-Suena – algorytm służący do szkieletyzacji obrazu binarnego. Szkieletyzacja polega na wyborze z obrazu binarnego tych pikseli, które są równo odległe od krawędzi obiektu.