Problem wydawania reszty (programowanie dynamiczne, drugi wariant)

Problem wydawania reszty, programowanie dynamiczne 2 (1) Przykładowe wykonanie algorytmu
REKLAMA

Web accessibility. Wprowadzenie do dostępności cyfrowej
−40%47,40 zł
Algorytmy uczenia maszynowego. Zaawansowane techniki implementacji
89,00 zł

Ten artykuł opisuje pewną modyfikację algorytmu opartego na programowaniu dynamicznym rozwiązującego problem wydawania reszty. Algorytm ten daje gwarancję znalezienia rozwiązania optymalnego. Algorytm zaproponował J.W. Wright w pracy The Change-Making Problem (link w bibliografii).

Sformułowanie problemu

Dany jest posortowany rosnąco ciąg nominałów A=(c1, c2, …, cn) oraz kwota do wydania r. Należy wyznaczyć takie nieujemne współczynniki k1, k2, …, kn, że k1c1+k2cc+…+kncn=r, a suma k1+k2+…+kn jest jak najmniejsza.

Zakładamy, że wszystkie nominały i kwota r są liczbami naturalnymi, a nominał c1=1. Przyjmujemy również że wartości k nie mają górnych ograniczeń.

Opis algorytmu

Ten algorytm polega na rozstrzyganiu, od którego z nominałów należy rozpocząć wydawanie kwoty. Oznaczmy jako oi optymalną (najmniejszą z możliwych) liczbę monet potrzebnych do wyznaczenia kwoty i. Aby wyznaczyć wartość oi musimy wiedzieć, która z wartości: oi-c1, oi-c2, … ,oi-cj jest najmniejsza (j jest indeksem najwyższego nominału mniejszego bądź równego i). Rozwijając to zagadnienie rekurencyjnie dojdziemy w końcu do przypadku oczywistego, jakim jest wydanie kwoty 0 za pomocą 0 monet. Formalnie możemy to zapisać jako:

oi =

  • 0 dla i=0
  • min(oi-c1, oi-c2, … ,oi-cj)+1 dla i>0 i c1, c2, …, cj ≤ i

Warto zauważyć, że w ten sposób wyznaczamy jedynie łączną liczbę potrzebnych monet, a nie poszczególne współczynniki ki. Dlatego też w każdej komórce tabeli oprócz wartości oi należy zapamiętać również wartość si przechowującą indeks nominału, od którego należy rozpocząć wydawanie kwoty i.

Mając wyznaczone wartości si poszczególne współczynniki ki można wyznaczyć w prosty sposób. Na początku wszystkim współczynnikom ki przypisujemy wartość 0. Następnie sprawdzamy wartość sr i zwiększamy wartość współczynnika ksr o 1. W kolejnym kroku zmniejszamy wartość r o csr i odczytujemy kolejną wartość sr. Czynności powtarzamy, dopóki r>0.

Wartości oi można wyznaczać rekurencyjnie, jednak częściej wypełnia się ją w sposób iteracyjny (od wartości o0 do or).

Złożoność obliczeniowa

Tabela tworzona w trakcie wykonywania algorytmu ma r+1 komórek (r jest kwotą do wydania). W trakcie wypełniania każdej komórki musimy sprawdzić co najwyżej n możliwości (n jest liczbą nominałów). Złożoność czasowa algorytmu jest zatem O(nr), a złożoność pamięciowa to O(r).

Przykład

Załóżmy, że chcemy wyrazić kwotę 6 mając monety o nominałach 1, 3 i 4. Aby wyrazić tę kwotę za pomocą jak najmniejszej liczby monet, musimy wiedzieć, od której monety najlepiej zacząć wydawanie kwoty. W naszym przypadku musimy zatem wiedzieć:

  • Ile monet potrzeba do wydania kwoty 2? (6-4=2)
  • Ile monet potrzeba do wydania kwoty 3? (6-3=3)
  • Ile monet potrzeba do wydania kwoty 5? (6-1=5)

Aby odpowiedzieć na powyższe pytania, musimy rekurencyjnie stawiać kolejne, aż dojdziemy do przypadku oczywistego (kwota równa 0 wymagająca użycia 0 monet). Aby nie stosować rekurencji, rozwiążmy problem w sposób iteracyjny, wyznaczając liczby monet potrzebnych do wydania kolejnych kwot od 0 do 6.

  • Aby wydać kwotę 0, potrzebujemy 0 monet (przypadek oczywisty).
  • Aby wydać kwotę 1, musimy użyć monety o nominale 1.
  • Aby wydać kwotę 2, musimy użyć monety o nominale 1. Zostaje wówczas do wydania kwota 1, do wydania której potrzeba 1 monety. Łącznie do wydania kwoty 2 potrzebujemy zatem 2 monet.
  • Aby wydać kwotę 3, możemy użyć monety o nominale 1 (wówczas pozostaje kwota 2 wymagająca użycia 2 monet) albo monety o nominale 3 (wówczas pozostaje kwota 0 wymagająca użycia 0 monet). Używamy więc monety o nominale 3. Do wydania kwoty 2 potrzebujemy zatem 1 monety.
  • Aby wydać kwotę 4, możemy użyć monety o nominale 1 (wówczas pozostaje kwota 3 wymagająca użycia 1 monety), monety o nominale 3 (wówczas pozostaje kwota 1 wymagająca użycia 1 monety) albo monety o nominale 4 (wówczas pozostaje kwota 0 wymagająca użycia 0 monet). Używamy więc monety o nominale 3. Do wydania kwoty 4 potrzebujemy zatem 1 monety.
  • Aby wydać kwotę 5, możemy użyć monety o nominale 1 (wówczas pozostaje kwota 4 wymagająca użycia 1 monety), monety o nominale 3 (wówczas pozostaje kwota 2 wymagająca użycia 2 monet) albo monety o nominale 4 (wówczas pozostaje kwota 1 wymagająca użycia 1 monety). Używamy więc monety o nominale 4. Do wydania kwoty 5 potrzebujemy zatem 2 monet.
  • Aby wydać kwotę 6, możemy użyć monety o nominale 1 (wówczas pozostaje kwota 5 wymagająca użycia 2 monet), monety o nominale 3 (wówczas pozostaje kwota 3 wymagająca użycia 1 monety) albo monety o nominale 4 (wówczas pozostaje kwota 2 wymagająca użycia 2 monet). Używamy więc monety o nominale 3. Do wydania kwoty 6 potrzebujemy zatem 2 monet.

Podsumowując, aby wydać kwotę 6 najpierw należy użyć monety o nominale 3. Pozostaje wówczas kwota 3, do wydania której ponownie używamy monety o nominale 3. Uzyskujemy w ten sposób rozwiązanie optymalne.

Kod źródłowy

Przykładowa implementacja algorytmu w języku C++ jest dostępna poniżej.

void programowanieDynamiczne(int* c, int n, int r, int* k) {

	// Alokacja tymczasowych tabel
	int* o = new int[r+1]; // Tutaj będą optymalne liczby monet potrzebne do wydania kwoty "i"
	int* s = new int[r+1]; // Tutaj będą indeksy nominałów, od których należy rozpocząć wydawanie kwoty "i"

	int i, j, opt; // Liczniki, zmienna pomocnicza

	o[0] = s[0] = 0; // Inicjalizacja dla kwoty 0

	// Wypełnianie tabel
	for (i = 1; i <= r; ++i) {

		opt = 0;

		for (j = 1; j < n; ++j) {

			if ( (c[j] <= i) && (o[i - c[j]] <= o[i - c[opt]])) {
				opt = j;
			}
		}

		o[i] = o[i - c[opt]] + 1;
		s[i] = opt;

	}

	// Wyzerowanie tablicy k[]
	for (j = 0; j < n; ++j) {
		k[j] = 0;
	}

	// Zwiększanie wartości k na podstawie tablicy s
	while (r > 0) {
		k[s[r]] += 1;
		r -= c[s[r]];
	}

	// Zwolnienie pamięci
	delete[] o;
	delete[] s;

}

Przykładowe wywołanie funkcji:

int main()
{
	int n = 6;
	int a[6] = { 1, 3, 4, 10, 30, 40 };
	int k[6] = { 0 };
	int r = 56;

	programowanieDynamiczne(a, n, r, k);

	return 0;
}

Bibliografia

  • J.W. Wright, The Change-Making Problem, JACM, Volume 22, Issue 1, 1975, s. 125-128, DOI: 10.1145/321864.321874.
Ocena: -3 Tak Nie
Liczba głosów: 9.

Dodano: 1 grudnia 2016 19:32, ostatnia edycja: 30 stycznia 2019 14:11.

REKLAMA

Zobacz też

Symulowane wyżarzanie – jedna z technik projektowania algorytmów heurystycznych (metaheurystyka). Cechą charakterystyczną tej metody jest występowanie parametru sterującego zwanego temperaturą, który maleje w trakcie wykonywania algorytmu. Im wyższą wartość ma ten parametr, tym bardziej chaotyczne mogą być zmiany. Podejście to jest inspirowane zjawiskami obserwowanymi w metalurgii – im większa temperatura metalu, tym bardziej jest on plastyczny.

Jest to metoda iteracyjna: najpierw losowane jest pewne rozwiązanie, a następnie jest ono w kolejnych krokach modyfikowane. Jeśli w danym kroku uzyskamy rozwiązanie lepsze, wybieramy je zawsze. Istotną cechą symulowanego wyżarzania jest jednak to, że z pewnym prawdopodobieństwem może być również zaakceptowane rozwiązanie gorsze (ma to na celu umożliwienie wyjście z maksimum lokalnego).

Prawdopodobieństwo przyjęcia gorszego rozwiązania wyrażone jest wzorem e(f(X)−f(X'))/T (rozkład Boltzmanna), gdzie X jest poprzednim rozwiązaniem, X' nowym rozwiązaniem, a f funkcją oceny jakości – im wyższa wartość f(X), tym lepsze rozwiązanie. Ze wzoru można zauważyć, że prawdopodobieństwo przyjęcia gorszego rozwiązania spada wraz ze spadkiem temperatury i wzrostem różnicy jakości obu rozwiązań.

→ Czytaj całość

Problem wydawania reszty (ang. change-making problem) – problem obliczeniowy polegający na tym, aby mając określony zbiór nominałów wyrazić daną kwotę za pomocą jak najmniejszej liczby monet. Jest to szczególny przypadek problemu plecakowego.

→ Czytaj całość

Metoda Otsu – algorytm służący do binaryzacji obrazu, czyli przekształcenia obrazu w odcieniach szarości do obrazu binarnego. Metoda ta realizuje progowanie globalne – dla całego obrazu wyznaczany jest jeden próg jasności, a następnie wszystkim pikselom jaśniejszym od tego progu przypisywana jest jedna wartość, a ciemniejszym druga.

Algorytm jest oparty na analizie histogramu. Przygotowanie histogramu polega na zliczeniu pikseli w każdym możliwym odcieniu (zazwyczaj liczba odcieni wynosi 256, gdyż tyle da się zakodować w jednym bajcie). Następnie należy sprawdzić każdy możliwy próg jasności i wybrać ten, dla którego wariancja międzyklasowa jest największa (lub suma ważona wariancji wewnątrzklasowych jest najmniejsza).

Jeśli obrazem wejściowym jest obraz kolorowy, można go łatwo sprowadzić do odcieni szarości. W przypadku kolorów zakodowanych w RGB najprostszym rozwiązaniem jest uśrednienie dla każdego piksela wartości wszystkich trzech kanałów.

→ Czytaj całość
Polityka prywatnościKontakt