Ten artykuł opisuje pewną modyfikację algorytmu opartego na programowaniu dynamicznym rozwiązującego problem wydawania reszty. Algorytm ten daje gwarancję znalezienia rozwiązania optymalnego. Algorytm zaproponował J.W. Wright w pracy The Change-Making Problem (link w bibliografii).
Dany jest posortowany rosnąco ciąg nominałów A=(c1, c2, …, cn) oraz kwota do wydania r. Należy wyznaczyć takie nieujemne współczynniki k1, k2, …, kn, że k1c1+k2cc+…+kncn=r, a suma k1+k2+…+kn jest jak najmniejsza.
Zakładamy, że wszystkie nominały i kwota r są liczbami naturalnymi, a nominał c1=1. Przyjmujemy również że wartości k nie mają górnych ograniczeń.
Ten algorytm polega na rozstrzyganiu, od którego z nominałów należy rozpocząć wydawanie kwoty. Oznaczmy jako oi optymalną (najmniejszą z możliwych) liczbę monet potrzebnych do wyznaczenia kwoty i. Aby wyznaczyć wartość oi musimy wiedzieć, która z wartości: oi-c1, oi-c2, … ,oi-cj jest najmniejsza (j jest indeksem najwyższego nominału mniejszego bądź równego i). Rozwijając to zagadnienie rekurencyjnie dojdziemy w końcu do przypadku oczywistego, jakim jest wydanie kwoty 0 za pomocą 0 monet. Formalnie możemy to zapisać jako:
oi =
Warto zauważyć, że w ten sposób wyznaczamy jedynie łączną liczbę potrzebnych monet, a nie poszczególne współczynniki ki. Dlatego też w każdej komórce tabeli oprócz wartości oi należy zapamiętać również wartość si przechowującą indeks nominału, od którego należy rozpocząć wydawanie kwoty i.
Mając wyznaczone wartości si poszczególne współczynniki ki można wyznaczyć w prosty sposób. Na początku wszystkim współczynnikom ki przypisujemy wartość 0. Następnie sprawdzamy wartość sr i zwiększamy wartość współczynnika ksr o 1. W kolejnym kroku zmniejszamy wartość r o csr i odczytujemy kolejną wartość sr. Czynności powtarzamy, dopóki r>0.
Wartości oi można wyznaczać rekurencyjnie, jednak częściej wypełnia się ją w sposób iteracyjny (od wartości o0 do or).
Tabela tworzona w trakcie wykonywania algorytmu ma r+1 komórek (r jest kwotą do wydania). W trakcie wypełniania każdej komórki musimy sprawdzić co najwyżej n możliwości (n jest liczbą nominałów). Złożoność czasowa algorytmu jest zatem O(nr), a złożoność pamięciowa to O(r).
Załóżmy, że chcemy wyrazić kwotę 6 mając monety o nominałach 1, 3 i 4. Aby wyrazić tę kwotę za pomocą jak najmniejszej liczby monet, musimy wiedzieć, od której monety najlepiej zacząć wydawanie kwoty. W naszym przypadku musimy zatem wiedzieć:
Aby odpowiedzieć na powyższe pytania, musimy rekurencyjnie stawiać kolejne, aż dojdziemy do przypadku oczywistego (kwota równa 0 wymagająca użycia 0 monet). Aby nie stosować rekurencji, rozwiążmy problem w sposób iteracyjny, wyznaczając liczby monet potrzebnych do wydania kolejnych kwot od 0 do 6.
Podsumowując, aby wydać kwotę 6 najpierw należy użyć monety o nominale 3. Pozostaje wówczas kwota 3, do wydania której ponownie używamy monety o nominale 3. Uzyskujemy w ten sposób rozwiązanie optymalne.
Przykładowa implementacja algorytmu w języku C++ jest dostępna poniżej.
void programowanieDynamiczne(int* c, int n, int r, int* k) { // Alokacja tymczasowych tabel int* o = new int[r+1]; // Tutaj będą optymalne liczby monet potrzebne do wydania kwoty "i" int* s = new int[r+1]; // Tutaj będą indeksy nominałów, od których należy rozpocząć wydawanie kwoty "i" int i, j, opt; // Liczniki, zmienna pomocnicza o[0] = s[0] = 0; // Inicjalizacja dla kwoty 0 // Wypełnianie tabel for (i = 1; i <= r; ++i) { opt = 0; for (j = 1; j < n; ++j) { if ( (c[j] <= i) && (o[i - c[j]] <= o[i - c[opt]])) { opt = j; } } o[i] = o[i - c[opt]] + 1; s[i] = opt; } // Wyzerowanie tablicy k[] for (j = 0; j < n; ++j) { k[j] = 0; } // Zwiększanie wartości k na podstawie tablicy s while (r > 0) { k[s[r]] += 1; r -= c[s[r]]; } // Zwolnienie pamięci delete[] o; delete[] s; }
Przykładowe wywołanie funkcji:
int main() { int n = 6; int a[6] = { 1, 3, 4, 10, 30, 40 }; int k[6] = { 0 }; int r = 56; programowanieDynamiczne(a, n, r, k); return 0; }
Dodano: 1 grudnia 2016 19:32, ostatnia edycja: 30 stycznia 2019 14:11.
Ten artykuł opisuje algorytm rozwiązujący problem wydawania reszty oparty na programowaniu dynamicznym. Algorytm ten daje gwarancję znalezienia rozwiązania optymalnego.
Istnieje również pewna modyfikacja tego algorytmu, która została opisana w osobnym artykule.
Algorytm Johnsona – algorytm służący do wyznaczania najkrótszych ścieżek pomiędzy każdą parą wierzchołków w grafie. Algorytm wykorzystuje algorytm Dijkstry i algorytm Bellmana-Forda. Dopuszcza krawędzie o ujemnych wagach, o ile nie tworzą ujemnych cykli.
Złożoność czasowa algorytmu (jeśli algorytm Dijkstry zostanie zaimplementowany z wykorzystaniem kopca Fibonacciego) to O(n2log n + en), gdzie n jest liczbą wierzchołków, a e jest liczbą krawędzi. Dla grafów rzadkich (ze stosunkowo małą liczbą krawędzi) jest to złożoność lepsza, niż złożoność algorytmu Floyda-Warshalla.
Algorytm Floyda-Warshalla – algorytm służący do wyznaczania najkrótszych ścieżek pomiędzy każdą parą wierzchołków w grafie. Jest to algorytm oparty na programowaniu dynamicznym. Algorytm ma złożoność czasową O(n3) i złożoność pamięciową O(n2), gdzie n jest liczbą wierzchołków.
Algorytm dopuszcza krawędzie o ujemnych wagach, o ile nie tworzą ujemnych cykli. Algorytm może być również wykorzystywany do wyszukiwania ujemnych cykli w grafie.