Problem wydawania reszty (programowanie dynamiczne, drugi wariant)

Problem wydawania reszty, programowanie dynamiczne 2 (1) Przykładowe wykonanie algorytmu
REKLAMA

Web accessibility. Wprowadzenie do dostępności cyfrowej
−40%47,40 zł
Programowanie w języku C. Ćwiczenia praktyczne. Wydanie II
29,90 zł

Ten artykuł opisuje pewną modyfikację algorytmu opartego na programowaniu dynamicznym rozwiązującego problem wydawania reszty. Algorytm ten daje gwarancję znalezienia rozwiązania optymalnego. Algorytm zaproponował J.W. Wright w pracy The Change-Making Problem (link w bibliografii).

Sformułowanie problemu

Dany jest posortowany rosnąco ciąg nominałów A=(c1, c2, …, cn) oraz kwota do wydania r. Należy wyznaczyć takie nieujemne współczynniki k1, k2, …, kn, że k1c1+k2cc+…+kncn=r, a suma k1+k2+…+kn jest jak najmniejsza.

Zakładamy, że wszystkie nominały i kwota r są liczbami naturalnymi, a nominał c1=1. Przyjmujemy również że wartości k nie mają górnych ograniczeń.

Opis algorytmu

Ten algorytm polega na rozstrzyganiu, od którego z nominałów należy rozpocząć wydawanie kwoty. Oznaczmy jako oi optymalną (najmniejszą z możliwych) liczbę monet potrzebnych do wyznaczenia kwoty i. Aby wyznaczyć wartość oi musimy wiedzieć, która z wartości: oi-c1, oi-c2, … ,oi-cj jest najmniejsza (j jest indeksem najwyższego nominału mniejszego bądź równego i). Rozwijając to zagadnienie rekurencyjnie dojdziemy w końcu do przypadku oczywistego, jakim jest wydanie kwoty 0 za pomocą 0 monet. Formalnie możemy to zapisać jako:

oi =

  • 0 dla i=0
  • min(oi-c1, oi-c2, … ,oi-cj)+1 dla i>0 i c1, c2, …, cj ≤ i

Warto zauważyć, że w ten sposób wyznaczamy jedynie łączną liczbę potrzebnych monet, a nie poszczególne współczynniki ki. Dlatego też w każdej komórce tabeli oprócz wartości oi należy zapamiętać również wartość si przechowującą indeks nominału, od którego należy rozpocząć wydawanie kwoty i.

Mając wyznaczone wartości si poszczególne współczynniki ki można wyznaczyć w prosty sposób. Na początku wszystkim współczynnikom ki przypisujemy wartość 0. Następnie sprawdzamy wartość sr i zwiększamy wartość współczynnika ksr o 1. W kolejnym kroku zmniejszamy wartość r o csr i odczytujemy kolejną wartość sr. Czynności powtarzamy, dopóki r>0.

Wartości oi można wyznaczać rekurencyjnie, jednak częściej wypełnia się ją w sposób iteracyjny (od wartości o0 do or).

Złożoność obliczeniowa

Tabela tworzona w trakcie wykonywania algorytmu ma r+1 komórek (r jest kwotą do wydania). W trakcie wypełniania każdej komórki musimy sprawdzić co najwyżej n możliwości (n jest liczbą nominałów). Złożoność czasowa algorytmu jest zatem O(nr), a złożoność pamięciowa to O(r).

Przykład

Załóżmy, że chcemy wyrazić kwotę 6 mając monety o nominałach 1, 3 i 4. Aby wyrazić tę kwotę za pomocą jak najmniejszej liczby monet, musimy wiedzieć, od której monety najlepiej zacząć wydawanie kwoty. W naszym przypadku musimy zatem wiedzieć:

  • Ile monet potrzeba do wydania kwoty 2? (6-4=2)
  • Ile monet potrzeba do wydania kwoty 3? (6-3=3)
  • Ile monet potrzeba do wydania kwoty 5? (6-1=5)

Aby odpowiedzieć na powyższe pytania, musimy rekurencyjnie stawiać kolejne, aż dojdziemy do przypadku oczywistego (kwota równa 0 wymagająca użycia 0 monet). Aby nie stosować rekurencji, rozwiążmy problem w sposób iteracyjny, wyznaczając liczby monet potrzebnych do wydania kolejnych kwot od 0 do 6.

  • Aby wydać kwotę 0, potrzebujemy 0 monet (przypadek oczywisty).
  • Aby wydać kwotę 1, musimy użyć monety o nominale 1.
  • Aby wydać kwotę 2, musimy użyć monety o nominale 1. Zostaje wówczas do wydania kwota 1, do wydania której potrzeba 1 monety. Łącznie do wydania kwoty 2 potrzebujemy zatem 2 monet.
  • Aby wydać kwotę 3, możemy użyć monety o nominale 1 (wówczas pozostaje kwota 2 wymagająca użycia 2 monet) albo monety o nominale 3 (wówczas pozostaje kwota 0 wymagająca użycia 0 monet). Używamy więc monety o nominale 3. Do wydania kwoty 2 potrzebujemy zatem 1 monety.
  • Aby wydać kwotę 4, możemy użyć monety o nominale 1 (wówczas pozostaje kwota 3 wymagająca użycia 1 monety), monety o nominale 3 (wówczas pozostaje kwota 1 wymagająca użycia 1 monety) albo monety o nominale 4 (wówczas pozostaje kwota 0 wymagająca użycia 0 monet). Używamy więc monety o nominale 3. Do wydania kwoty 4 potrzebujemy zatem 1 monety.
  • Aby wydać kwotę 5, możemy użyć monety o nominale 1 (wówczas pozostaje kwota 4 wymagająca użycia 1 monety), monety o nominale 3 (wówczas pozostaje kwota 2 wymagająca użycia 2 monet) albo monety o nominale 4 (wówczas pozostaje kwota 1 wymagająca użycia 1 monety). Używamy więc monety o nominale 4. Do wydania kwoty 5 potrzebujemy zatem 2 monet.
  • Aby wydać kwotę 6, możemy użyć monety o nominale 1 (wówczas pozostaje kwota 5 wymagająca użycia 2 monet), monety o nominale 3 (wówczas pozostaje kwota 3 wymagająca użycia 1 monety) albo monety o nominale 4 (wówczas pozostaje kwota 2 wymagająca użycia 2 monet). Używamy więc monety o nominale 3. Do wydania kwoty 6 potrzebujemy zatem 2 monet.

Podsumowując, aby wydać kwotę 6 najpierw należy użyć monety o nominale 3. Pozostaje wówczas kwota 3, do wydania której ponownie używamy monety o nominale 3. Uzyskujemy w ten sposób rozwiązanie optymalne.

Kod źródłowy

Przykładowa implementacja algorytmu w języku C++ jest dostępna poniżej.

void programowanieDynamiczne(int* c, int n, int r, int* k) {

	// Alokacja tymczasowych tabel
	int* o = new int[r+1]; // Tutaj będą optymalne liczby monet potrzebne do wydania kwoty "i"
	int* s = new int[r+1]; // Tutaj będą indeksy nominałów, od których należy rozpocząć wydawanie kwoty "i"

	int i, j, opt; // Liczniki, zmienna pomocnicza

	o[0] = s[0] = 0; // Inicjalizacja dla kwoty 0

	// Wypełnianie tabel
	for (i = 1; i <= r; ++i) {

		opt = 0;

		for (j = 1; j < n; ++j) {

			if ( (c[j] <= i) && (o[i - c[j]] <= o[i - c[opt]])) {
				opt = j;
			}
		}

		o[i] = o[i - c[opt]] + 1;
		s[i] = opt;

	}

	// Wyzerowanie tablicy k[]
	for (j = 0; j < n; ++j) {
		k[j] = 0;
	}

	// Zwiększanie wartości k na podstawie tablicy s
	while (r > 0) {
		k[s[r]] += 1;
		r -= c[s[r]];
	}

	// Zwolnienie pamięci
	delete[] o;
	delete[] s;

}

Przykładowe wywołanie funkcji:

int main()
{
	int n = 6;
	int a[6] = { 1, 3, 4, 10, 30, 40 };
	int k[6] = { 0 };
	int r = 56;

	programowanieDynamiczne(a, n, r, k);

	return 0;
}

Bibliografia

  • J.W. Wright, The Change-Making Problem, JACM, Volume 22, Issue 1, 1975, s. 125-128, DOI: 10.1145/321864.321874.
Ocena: -3 Tak Nie
Liczba głosów: 9.

Dodano: 1 grudnia 2016 19:32, ostatnia edycja: 30 stycznia 2019 14:11.

REKLAMA

Zobacz też

Rekurencja (inaczej rekursja) – odwołanie się funkcji lub definicji do samej siebie. Mówiąc inaczej, podejście rekurencyjne polega na tym, że rozwiązanie problemu wyraża się za pomocą rozwiązania tego samego problemu dla mniejszych danych wejściowych. Stosowanie rekurencji jest charakterystyczne dla algorytmów projektowanych metodą dziel i zwyciężaj.

Typowym problemem, dla którego można zastosować rekurencję, jest obliczanie silni. Przypomnijmy, że silnia z n jest zdefiniowana jako n!=1×2×…×n. Funkcja ta może być równoważnie zapisana jako:

n!=(n−1)!×n, dla n>0,
n!=1, dla n=0.

W powyższym przykładzie górny wiersz jest ogólnym równaniem rekurencji, zaś dolny wiersz jest wartością brzegową. W języku C++ powyższa funkcja byłaby zapisana w poniższy sposób.

int silnia(int n)
{
    if (n > 0)
    {
        return n * silnia(n-1);
    }
    else
    {
        return 1;
    }
};

Przekształcenie postaci rekurencyjnej funkcji do postaci zwartej (tzn. takiej, która nie zawiera odwołania do samej siebie) jest określane jako rozwiązanie rekurencji. Metody rozwiązywania rekurencji są dostępne między innymi w książkach podanych w bibliografii.

Algorytmy stosujące rekurencję są zazwyczaj proste w implementacji. Jednocześnie wiążą się one z pewnymi problemami. Przy podejściu rekurencyjnym ta sama funkcja jest wywoływana wielokrotnie, co zużywa pamięć operacyjną (w skrajnych przypadkach może to spowodować przepełnienie stosu).

→ Czytaj całość

Metoda Otsu – algorytm służący do binaryzacji obrazu, czyli przekształcenia obrazu w odcieniach szarości do obrazu binarnego. Metoda ta realizuje progowanie globalne – dla całego obrazu wyznaczany jest jeden próg jasności, a następnie wszystkim pikselom jaśniejszym od tego progu przypisywana jest jedna wartość, a ciemniejszym druga.

Algorytm jest oparty na analizie histogramu. Przygotowanie histogramu polega na zliczeniu pikseli w każdym możliwym odcieniu (zazwyczaj liczba odcieni wynosi 256, gdyż tyle da się zakodować w jednym bajcie). Następnie należy sprawdzić każdy możliwy próg jasności i wybrać ten, dla którego wariancja międzyklasowa jest największa (lub suma ważona wariancji wewnątrzklasowych jest najmniejsza).

Jeśli obrazem wejściowym jest obraz kolorowy, można go łatwo sprowadzić do odcieni szarości. W przypadku kolorów zakodowanych w RGB najprostszym rozwiązaniem jest uśrednienie dla każdego piksela wartości wszystkich trzech kanałów.

→ Czytaj całość

Algorytm Floyda-Warshalla – algorytm służący do wyznaczania najkrótszych ścieżek pomiędzy każdą parą wierzchołków w grafie. Jest to algorytm oparty na programowaniu dynamicznym. Algorytm ma złożoność czasową O(n3) i złożoność pamięciową O(n2), gdzie n jest liczbą wierzchołków.

Algorytm dopuszcza krawędzie o ujemnych wagach, o ile nie tworzą ujemnych cykli. Algorytm może być również wykorzystywany do wyszukiwania ujemnych cykli w grafie.

→ Czytaj całość
Polityka prywatnościKontakt