Ten artykuł opisuje pewną modyfikację algorytmu opartego na programowaniu dynamicznym rozwiązującego problem wydawania reszty. Algorytm ten daje gwarancję znalezienia rozwiązania optymalnego. Algorytm zaproponował J.W. Wright w pracy The Change-Making Problem (link w bibliografii).
Dany jest posortowany rosnąco ciąg nominałów A=(c1, c2, …, cn) oraz kwota do wydania r. Należy wyznaczyć takie nieujemne współczynniki k1, k2, …, kn, że k1c1+k2cc+…+kncn=r, a suma k1+k2+…+kn jest jak najmniejsza.
Zakładamy, że wszystkie nominały i kwota r są liczbami naturalnymi, a nominał c1=1. Przyjmujemy również że wartości k nie mają górnych ograniczeń.
Ten algorytm polega na rozstrzyganiu, od którego z nominałów należy rozpocząć wydawanie kwoty. Oznaczmy jako oi optymalną (najmniejszą z możliwych) liczbę monet potrzebnych do wyznaczenia kwoty i. Aby wyznaczyć wartość oi musimy wiedzieć, która z wartości: oi-c1, oi-c2, … ,oi-cj jest najmniejsza (j jest indeksem najwyższego nominału mniejszego bądź równego i). Rozwijając to zagadnienie rekurencyjnie dojdziemy w końcu do przypadku oczywistego, jakim jest wydanie kwoty 0 za pomocą 0 monet. Formalnie możemy to zapisać jako:
oi =
Warto zauważyć, że w ten sposób wyznaczamy jedynie łączną liczbę potrzebnych monet, a nie poszczególne współczynniki ki. Dlatego też w każdej komórce tabeli oprócz wartości oi należy zapamiętać również wartość si przechowującą indeks nominału, od którego należy rozpocząć wydawanie kwoty i.
Mając wyznaczone wartości si poszczególne współczynniki ki można wyznaczyć w prosty sposób. Na początku wszystkim współczynnikom ki przypisujemy wartość 0. Następnie sprawdzamy wartość sr i zwiększamy wartość współczynnika ksr o 1. W kolejnym kroku zmniejszamy wartość r o csr i odczytujemy kolejną wartość sr. Czynności powtarzamy, dopóki r>0.
Wartości oi można wyznaczać rekurencyjnie, jednak częściej wypełnia się ją w sposób iteracyjny (od wartości o0 do or).
Tabela tworzona w trakcie wykonywania algorytmu ma r+1 komórek (r jest kwotą do wydania). W trakcie wypełniania każdej komórki musimy sprawdzić co najwyżej n możliwości (n jest liczbą nominałów). Złożoność czasowa algorytmu jest zatem O(nr), a złożoność pamięciowa to O(r).
Załóżmy, że chcemy wyrazić kwotę 6 mając monety o nominałach 1, 3 i 4. Aby wyrazić tę kwotę za pomocą jak najmniejszej liczby monet, musimy wiedzieć, od której monety najlepiej zacząć wydawanie kwoty. W naszym przypadku musimy zatem wiedzieć:
Aby odpowiedzieć na powyższe pytania, musimy rekurencyjnie stawiać kolejne, aż dojdziemy do przypadku oczywistego (kwota równa 0 wymagająca użycia 0 monet). Aby nie stosować rekurencji, rozwiążmy problem w sposób iteracyjny, wyznaczając liczby monet potrzebnych do wydania kolejnych kwot od 0 do 6.
Podsumowując, aby wydać kwotę 6 najpierw należy użyć monety o nominale 3. Pozostaje wówczas kwota 3, do wydania której ponownie używamy monety o nominale 3. Uzyskujemy w ten sposób rozwiązanie optymalne.
Przykładowa implementacja algorytmu w języku C++ jest dostępna poniżej.
void programowanieDynamiczne(int* c, int n, int r, int* k) { // Alokacja tymczasowych tabel int* o = new int[r+1]; // Tutaj będą optymalne liczby monet potrzebne do wydania kwoty "i" int* s = new int[r+1]; // Tutaj będą indeksy nominałów, od których należy rozpocząć wydawanie kwoty "i" int i, j, opt; // Liczniki, zmienna pomocnicza o[0] = s[0] = 0; // Inicjalizacja dla kwoty 0 // Wypełnianie tabel for (i = 1; i <= r; ++i) { opt = 0; for (j = 1; j < n; ++j) { if ( (c[j] <= i) && (o[i - c[j]] <= o[i - c[opt]])) { opt = j; } } o[i] = o[i - c[opt]] + 1; s[i] = opt; } // Wyzerowanie tablicy k[] for (j = 0; j < n; ++j) { k[j] = 0; } // Zwiększanie wartości k na podstawie tablicy s while (r > 0) { k[s[r]] += 1; r -= c[s[r]]; } // Zwolnienie pamięci delete[] o; delete[] s; }
Przykładowe wywołanie funkcji:
int main() { int n = 6; int a[6] = { 1, 3, 4, 10, 30, 40 }; int k[6] = { 0 }; int r = 56; programowanieDynamiczne(a, n, r, k); return 0; }
Dodano: 1 grudnia 2016 19:32, ostatnia edycja: 30 stycznia 2019 14:11.
Ten artykuł opisuje algorytm zachłanny rozwiązujący problem wydawania reszty. Algorytm ten polega na wybieraniu zawsze największej dostępnej monety, tzn. takiej, która nie jest większa od kwoty pozostałej do wydania.
Algorytm nie zawsze znajduje rozwiązanie optymalne. Przykładowo, dla zbioru nominałów {1, 3, 4} i kwoty 6 algorytm użyje najpierw monety o nominale 4 (pozostaje do wydania kwota 2), potem monety o nominale 1 (pozostaje kwota 1) i jeszcze raz monety o nominale 1. Łącznie algorytm użyje więc trzech monet, podczas gdy rozwiązanie optymalne wymaga użycia tylko dwóch (dwie monety o nominale 3).
Programowanie dynamiczne – technika projektowania algorytmów polegająca na rozwiązywaniu podproblemów i zapamiętywaniu ich wyników. W technice tej, podobnie jak w metodzie dziel i zwyciężaj, problem dzielony jest na mniejsze podproblemy. Wyniki rozwiązywania podproblemów są jednak zapisywane w tabeli, dzięki czemu w przypadku natrafienia na ten sam podproblem nie trzeba go ponownie rozwiązywać.
Wykorzystując programowanie dynamiczne można zastosować metodę zstępującą z zapamiętywaniem lub metodę wstępującą.
2-opt, algorytm 2-optymalny – algorytm lokalnej optymalizacji wykorzystywany przy rozwiązywaniu problemu komiwojażera. Jest to szczególny przypadek algorytmu k-optymalnego.
Algorytm 2-opt nie służy do wyznaczania trasy, a jedynie do ulepszania jej. Samą trasę można wyznaczyć np. za pomocą algorytmu najbliższego sąsiada. Algorytm może być wykorzystany do ulepszenia algorytmu genetycznego – w ten sposób powstanie algorytm memetyczny.