Bogosort

Info
Algorytm opisany w tym artykule jest bardzo słaby, właściwie to informatyczny żart. Nie nadaje się on do praktycznych zastosowań.

Bogosort – bardzo słaby algorytm sortowania oparty na metodzie prób i błędów. Polega na ustawianiu elementów w losowej kolejności i sprawdzaniu, czy są posortowane. Średnia złożoność tego algorytmu jest rzędu silnia, a w przypadku pesymistycznym algorytm będzie działał w nieskończoność.

Algorytm występuje też w nieco ulepszonej wersji, w której nie sprawdza się wielokrotnie tego samego ustawienia. Wówczas algorytm daje gwarancję znalezienia rozwiązania, jednak jego złożoność czasowa nadal jest rzędu silnia (w przypadku pesymistycznym trzeba sprawdzić wszystkie permutacje zbioru).

Ze względu na bardzo dużą złożoność czasową bogosort nie nadaje się do praktycznych zastosowań. Istnieją proste w implementacji, a znacznie wydajniejsze algorytmy sortujące, np. sortowanie przez wstawianie.

Bibliografia

  • H. Gruber, M. Holzer, O. Ruepp, Sorting the Slow Way: An Analysis of Perversely Awful Randomized Sorting Algorithms, Fun with Algorithms, 2007, s. 183-197, DOI: 10.1007/978-3-540-72914-3_17.
Ocena: +1 Tak Nie
Liczba głosów: 1.

Dodano: 28 stycznia 2017 11:04, ostatnia edycja: 26 stycznia 2019 18:01.

REKLAMA

Zobacz też

Algorytm Helda-Karpa (czasami określany jako algorytm Bellmana-Helda-Karpa) – algorytm służący do rozwiązywania problemu komiwojażera. Jest to algorytm dokładny oparty na programowaniu dynamicznym. Algorytm ma złożoność czasową O(n22n) i złożoność pamięciową O(n2n). Jest to co prawda złożoność gorsza od wielomianowej, ale algorytm ten jest znacznie lepszy od algorytmu sprawdzającego wszystkie warianty (złożoność czasowa O(n!)).

→ Czytaj całość

Ten artykuł opisuje algorytm rozwiązujący problem wydawania reszty oparty na programowaniu dynamicznym. Algorytm ten daje gwarancję znalezienia rozwiązania optymalnego.

Istnieje również pewna modyfikacja tego algorytmu, która została opisana w osobnym artykule.

→ Czytaj całość

Algorytm Kruskala – algorytm wyznaczający minimalne drzewo rozpinające. Algorytm ten wykorzystuje strategię zachłanną.

→ Czytaj całość
Polityka prywatnościKontakt