Algorytm Edmondsa-Karpa

Algorytm Edmondsa-Karpa (1) Animacja pokazująca przykładowe wykonanie algorytmu. W sieci przepływowej wartość przed ukośnikiem oznacza aktualny przepływ, a wartość po ukośniku – przepływ maksymalny. Ścieżka powiększająca oznaczana jest na pomarańczowo
Algorytm Edmondsa-Karpa, jeden arkusz (2) Ten sam przykład zaprezentowany na jednym obrazku (kliknij, aby powiększyć)

Algorytm Edmondsa-Karpa – algorytm wyszukiwania maksymalnego przepływu w sieci przepływowej. Jest to przypadek szczególny algorytmu Forda-Fulkersona.

W algorytmie Edmondsa-Karpa ścieżka powiększająca wyznaczana jest za pomocą przeszukiwania grafu wszerz. Dzięki temu w każdej iteracji algorytmu dołączana jest zawsze najkrótsza (pod względem liczby krawędzi) ścieżka powiększająca. W metodzie Forda-Fulkersona sposób wyznaczania ścieżki powiększającej jest dowolny.

Pojęcia

Aby zrozumieć algorytm Edmondsa-Karpa (i ogólnie metodę Forda-Fulkersona) konieczna jest znajomość następujących pojęć:

  • Sieć residualna – graf skierowany, w którym każdy łuk (krawędź skierowana) informuje, o ile można zmienić (zwiększyć bądź zmniejszyć) przepływ w danym łuku sieci przepływowej. Przykład: załóżmy, że w sieci przepływowej mamy łuk prowadzący z wierzchołka A do wierzchołka B o przepustowości 5, przy czym aktualnie wykorzystujemy przepustowość 2. Zakładamy też, że sieć nie zawiera łuku prowadzącego z B do A. W takim przypadku sieć residualna będzie zawierała łuk prowadzący z A do B o wartości 3 (o tyle możemy zwiększyć przepływ) oraz łuk prowadzący z B do A o wartości 2 (o tyle możemy zmniejszyć przepływ).
  • Ścieżka powiększająca – ścieżka prosta (tzn. nie przechodząca wielokrotnie przez ten sam wierzchołek) w sieci residualnej prowadząca od źródła do ujścia.
  • Przepustowość residualna ścieżki powiększającej – maksymalna wartość, o którą możemy zwiększyć przepływ na ścieżce powiększającej. Jest ona równa najmniejszej spośród wag łuków należących do ścieżki powiększającej.

Przebieg algorytmu

Algorytm ten przebiega w następująco:

  1. Tworzymy sieć residualną,
  2. Wyznaczamy ścieżkę powiększającą w sieci residualnej przeszukując ją wszerz,
  3. Jeśli nie da się wyznaczyć żadnej ścieżki powiększającej, kończymy działanie algorytmu. W przeciwnym razie modyfikujemy przepływ w sieci przepływowej o wartość residualną ścieżki powiększającej.

Złożoność czasowa algorytmu

Wyznaczenie ścieżki za pomocą przeszukiwania wszerz ma złożoność O(e) (e jest liczbą krawędzi). Liczba wykonań głównej pętli algorytmu jest rzędu O(ne) (n jest liczbą wierzchołków). Złożoność czasowa algorytmu Edmondsa-Karpa wynosi zatem O(ne2). Wyprowadzenie tych wartości można znaleźć w książce Wprowadzenie do algorytmów.

Bibliografia

  1. T.H. Cormen, Ch.E. Leiserson, R.L. Rivest, C. Stein, Wprowadzenie do algorytmów, Wydawnictwo Naukowe PWN, Warszawa, 2012.
  2. A. Debudaj-Grabysz, S. Deorowicz, J. Widuch, Algorytmy i struktury danych. Wybór zaawansowanych metod, Wydawnictwo Politechniki Śląskiej, Gliwice, 2012
Ocena: 0 Tak Nie
Liczba głosów: 0.

Dodano: 22 listopada 2017 18:04, ostatnia edycja: 12 grudnia 2017 15:57.

REKLAMA

Zobacz też

Algorytm najmniejszej krawędzi – algorytm służący do rozwiązywania problemu komiwojażera. Jest to algorytm wykorzystujący strategię zachłanną, jednak w inny sposób, niż algorytm najbliższego sąsiada. W anglojęzycznej literaturze algorytm jest najczęściej określany po prostu jako greedy algorithm (algorytm zachłanny), w skrócie GR.
→ Czytaj całość

Algorytm heurystyczny, heurystyka – algorytm niedający (w ogólnym przypadku) gwarancji znalezienia rozwiązania optymalnego, umożliwiający jednak znalezienie rozwiązania dość dobrego w rozsądnym czasie. Algorytmy tego typu używane są w takich problemach obliczeniowych, gdzie znalezienie rozwiązania optymalnego ma zbyt dużą złożoność obliczeniową (w szczególności są to problemy NP-trudne) lub w ogóle nie jest możliwe. Metody heurystyczne zaliczają się do sztucznej inteligencji.

Pojęcie algorytmów heurystycznych jest bardzo szerokie, dotyczy ono różnych technik projektowania algorytmów. Wiele heurystyk wykorzystuje losowość, inne zaś są deterministyczne (wówczas dla takich samych danych wejściowych algorytm zawsze zwróci ten sam wynik).

Ogólny algorytm heurystyczny (opisujący samą ideę poszukiwań) bywa określany w literaturze jako metaheurystyka. Zgodnie z tym nazewnictwem, metaheurystyką jest np. algorytm zachłanny (jako ogólna idea), zaś heurystyką jest np. algorytm najbliższego sąsiada (jako zastosowanie idei algorytmu zachłannego do konkretnego problemu).

Przykładowe techniki konstruowania algorytmów heurystycznych to:

→ Czytaj całość

Metoda Forda-Fulkersona – algorytm służący do wyznaczania maksymalnego przepływu. Jest to algorytm bardzo ogólny, dlatego często nie jest nazywany algorytmem, a metodą. Popularną implementacją tej metody jest algorytm Edmondsa-Karpa. Algorytm można opisać następująco:

  1. Wyznacz sieć residualną (opis sieci residualnej znajduje się w dalszej części artykułu).
  2. Znajdź w sieci residualnej dowolną ścieżkę powiększającą.
  3. Jeśli nie udało się wyznaczyć żadnej ścieżki powiększającej, zakończ działanie algorytmu.
  4. W przeciwnym razie zwiększ przepływ w sieci (w sposób opisany w dalszej części artukułu) i wróć do punktu 1.
→ Czytaj całość
Polityka prywatnościKontakt