Programowanie w języku C. Ćwiczenia praktyczne. Wydanie II
19,90 zł
Biblia e-biznesu 2. Nowy Testament
−30%90,30 zł
Algorytmy, struktury danych i techniki programowania. Wydanie V
49,00 zł
Młodzi giganci programowania. Scratch
34,90 zł
Algorytmy. Ilustrowany przewodnik
54,90 zł
Visual Studio 2017. Tworzenie aplikacji Windows w języku C#
89,00 zł

Algorytm Edmondsa-Karpa

Algorytm Edmondsa-Karpa Animacja pokazująca przykładowe wykonanie algorytmu. W sieci przepływowej wartość przed ukośnikiem oznacza aktualny przepływ, a wartość po ukośniku – przepływ maksymalny. Ścieżka powiększająca oznaczana jest na pomarańczowo
Algorytm Edmondsa-Karpa, jeden arkusz Ten sam przykład zaprezentowany na jednym obrazku (kliknij, aby powiększyć)
REKLAMA

Algorytm Edmondsa-Karpa – algorytm wyszukiwania maksymalnego przepływu w sieci przepływowej. Jest to przypadek szczególny algorytmu Forda-Fulkersona.

W algorytmie Edmondsa-Karpa ścieżka powiększająca wyznaczana jest za pomocą przeszukiwania grafu wszerz. Dzięki temu w każdej iteracji algorytmu dołączana jest zawsze najkrótsza (pod względem liczby krawędzi) ścieżka powiększająca. W metodzie Forda-Fulkersona sposób wyznaczania ścieżki powiększającej jest dowolny.

Pojęcia

Aby zrozumieć algorytm Edmondsa-Karpa (i ogólnie metodę Forda-Fulkersona) konieczna jest znajomość następujących pojęć:

  • Sieć residualna – graf skierowany, w którym każdy łuk (krawędź skierowana) informuje, o ile można zmienić (zwiększyć bądź zmniejszyć) przepływ w danym łuku sieci przepływowej. Przykład: załóżmy, że w sieci przepływowej mamy łuk prowadzący z wierzchołka A do wierzchołka B o przepustowości 5, przy czym aktualnie wykorzystujemy przepustowość 2. Zakładamy też, że sieć nie zawiera łuku prowadzącego z B do A. W takim przypadku sieć residualna będzie zawierała łuk prowadzący z A do B o wartości 3 (o tyle możemy zwiększyć przepływ) oraz łuk prowadzący z B do A o wartości 2 (o tyle możemy zmniejszyć przepływ).
  • Ścieżka powiększająca – ścieżka prosta (tzn. nie przechodząca wielokrotnie przez ten sam wierzchołek) w sieci residualnej prowadząca od źródła do ujścia.
  • Przepustowość residualna ścieżki powiększającej – maksymalna wartość, o którą możemy zwiększyć przepływ na ścieżce powiększającej. Jest ona równa najmniejszej spośród wag łuków należących do ścieżki powiększającej.

Przebieg algorytmu

Algorytm ten przebiega w następująco:

  1. Tworzymy sieć residualną,
  2. Wyznaczamy ścieżkę powiększającą w sieci residualnej przeszukując ją wszerz,
  3. Jeśli nie da się wyznaczyć żadnej ścieżki powiększającej, kończymy działanie algorytmu. W przeciwnym razie modyfikujemy przepływ w sieci przepływowej o wartość residualną ścieżki powiększającej.

Złożoność czasowa algorytmu

Wyznaczenie ścieżki za pomocą przeszukiwania wszerz ma złożoność O(e) (e jest liczbą krawędzi). Liczba wykonań głównej pętli algorytmu jest rzędu O(ne) (n jest liczbą wierzchołków). Złożoność czasowa algorytmu Edmondsa-Karpa wynosi zatem O(ne2). Wyprowadzenie tych wartości można znaleźć w książce Wprowadzenie do algorytmów.

Bibliografia

  1. T.H. Cormen, Ch.E. Leiserson, R.L. Rivest, C. Stein, Wprowadzenie do algorytmów, Wydawnictwo Naukowe PWN, Warszawa, 2012.
  2. A. Debudaj-Grabysz, S. Deorowicz, J. Widuch, Algorytmy i struktury danych. Wybór zaawansowanych metod, Wydawnictwo Politechniki Śląskiej, Gliwice, 2012
Ocena: 0 Tak Nie
Liczba głosów: 0.

Dodano: 22 listopada 2017 18:04, ostatnia edycja: 12 grudnia 2017 15:57.

REKLAMA

Zobacz też

Metoda z zastosowaniem przepływu blokującego – algorytm wyznaczający maksymalny przepływ w sieci przepływowej. W algorytmie tym przepływ zwiększany jest iteracyjnie, w każdej iteracji wyznaczony przepływ jest powiększany o przepływ blokujący w warstwowej sieci residualnej.

→ Czytaj całość

Quicksort, sortowanie szybkie – algorytm sortowania działający w średnim przypadku w czasie liniowo-logarytmicznym. Algorytm jest oparty na metodzie dziel i zwyciężaj. Nie jest to algorytm stabilny ani wykazujący zachowanie naturalne, jednak ze względu na efektywność jest algorytmem bardzo popularnym.

→ Czytaj całość

Notacja dużego O – notacja przedstawiająca asymptotyczne tempo wzrostu, wykorzystywana do zapisywania złożoności obliczeniowej algorytmu. Za pomocą tej notacji zapisywany jest rząd wielkości funkcji wyrażającej liczbę operacji dominujących (w przypadku złożoności czasowej) lub rozmiar wymaganej pamięci (w przypadku złożoności pamięciowej) w zależności od liczby danych wejściowych.

Wykorzystując notację dużego O nie podajemy dokładnego wzoru funkcji, a jedynie jej najbardziej znaczący składnik, w dodatku z pominięciem stałego współczynnika. Przykładowo, funkcję postaci f(n)=5n2+20n+100 możemy zapisać jako O(n2). Zakładamy bowiem, że dla dostatecznie dużych n wpływ pomijanych elementów jest znikomy. Choć oczywiście dla małych n może się zdarzyć, że funkcja o gorszej złożoności będzie się wykonywała szybciej.

Weźmy dla przykładu funkcje f(n) = 1000n+2000 i g(n) = n2. Choć pierwsza funkcja ma pozornie bardzo duże stałe współczynniki, to dla n ≥ 1002 będzie ona przyjmowała wartości mniejsze. Im większe n, tym ta różnica będzie wyraźniejsza. Dla n = 10000 (w przypadku danych przetwarzanych komputerowo nie jest to wielka wartość) f(n) = 10002000 (ok. 10 mln), a g(n) = 100000000 (100 mln), czyli blisko 10 razy więcej.

Możliwe jest również wykorzystanie notacji dużego O dla funkcji wielu zmiennych. Wówczas zapis może wyglądać tak: O(v2e). Znajduje to zastosowanie np. dla algorytmów operujących na grafach, gdzie złożoność zależy zarówno od liczby wierzchołków, jak i liczby krawędzi w grafie.

→ Czytaj całość
Polityka prywatnościKontakt