Algorytm Edmondsa-Karpa

Algorytm Edmondsa-Karpa (1) Animacja pokazująca przykładowe wykonanie algorytmu. W sieci przepływowej wartość przed ukośnikiem oznacza aktualny przepływ, a wartość po ukośniku – przepływ maksymalny. Ścieżka powiększająca oznaczana jest na pomarańczowo
Algorytm Edmondsa-Karpa, jeden arkusz (2) Ten sam przykład zaprezentowany na jednym obrazku (kliknij, aby powiększyć)

Algorytm Edmondsa-Karpa – algorytm wyszukiwania maksymalnego przepływu w sieci przepływowej. Jest to przypadek szczególny algorytmu Forda-Fulkersona.

W algorytmie Edmondsa-Karpa ścieżka powiększająca wyznaczana jest za pomocą przeszukiwania grafu wszerz. Dzięki temu w każdej iteracji algorytmu dołączana jest zawsze najkrótsza (pod względem liczby krawędzi) ścieżka powiększająca. W metodzie Forda-Fulkersona sposób wyznaczania ścieżki powiększającej jest dowolny.

Pojęcia

Aby zrozumieć algorytm Edmondsa-Karpa (i ogólnie metodę Forda-Fulkersona) konieczna jest znajomość następujących pojęć:

  • Sieć residualna – graf skierowany, w którym każdy łuk (krawędź skierowana) informuje, o ile można zmienić (zwiększyć bądź zmniejszyć) przepływ w danym łuku sieci przepływowej. Przykład: załóżmy, że w sieci przepływowej mamy łuk prowadzący z wierzchołka A do wierzchołka B o przepustowości 5, przy czym aktualnie wykorzystujemy przepustowość 2. Zakładamy też, że sieć nie zawiera łuku prowadzącego z B do A. W takim przypadku sieć residualna będzie zawierała łuk prowadzący z A do B o wartości 3 (o tyle możemy zwiększyć przepływ) oraz łuk prowadzący z B do A o wartości 2 (o tyle możemy zmniejszyć przepływ).
  • Ścieżka powiększająca – ścieżka prosta (tzn. nie przechodząca wielokrotnie przez ten sam wierzchołek) w sieci residualnej prowadząca od źródła do ujścia.
  • Przepustowość residualna ścieżki powiększającej – maksymalna wartość, o którą możemy zwiększyć przepływ na ścieżce powiększającej. Jest ona równa najmniejszej spośród wag łuków należących do ścieżki powiększającej.

Przebieg algorytmu

Algorytm ten przebiega w następująco:

  1. Tworzymy sieć residualną,
  2. Wyznaczamy ścieżkę powiększającą w sieci residualnej przeszukując ją wszerz,
  3. Jeśli nie da się wyznaczyć żadnej ścieżki powiększającej, kończymy działanie algorytmu. W przeciwnym razie modyfikujemy przepływ w sieci przepływowej o wartość residualną ścieżki powiększającej.

Złożoność czasowa algorytmu

Wyznaczenie ścieżki za pomocą przeszukiwania wszerz ma złożoność O(e) (e jest liczbą krawędzi). Liczba wykonań głównej pętli algorytmu jest rzędu O(ne) (n jest liczbą wierzchołków). Złożoność czasowa algorytmu Edmondsa-Karpa wynosi zatem O(ne2). Wyprowadzenie tych wartości można znaleźć w książce Wprowadzenie do algorytmów.

Bibliografia

  1. T.H. Cormen, Ch.E. Leiserson, R.L. Rivest, C. Stein, Wprowadzenie do algorytmów, Wydawnictwo Naukowe PWN, Warszawa, 2012.
  2. A. Debudaj-Grabysz, S. Deorowicz, J. Widuch, Algorytmy i struktury danych. Wybór zaawansowanych metod, Wydawnictwo Politechniki Śląskiej, Gliwice, 2012
Ocena: 0 Tak Nie
Liczba głosów: 0.

Dodano: 22 listopada 2017 18:04, ostatnia edycja: 12 grudnia 2017 15:57.

REKLAMA

Zobacz też

Algorytmy zachłanne (ang. greedy algorithms) – algorytmy podejmujące w każdym kroku taką decyzję, która w danej chwili wydaje się najkorzystniejsza. Inaczej mówiąc, algorytmy zachłanne dokonują zawsze wyborów lokalnie optymalnych licząc, że doprowadzi to do znalezienia rozwiązania globalnie optymalnego. W ogólnym przypadku algorytmy zachłanne nie zawsze znajdują rozwiązanie optymalne. Są one zatem podzbiorem algorytmów heurystycznych. Jednocześnie są to algorytmy deterministyczne – nie ma w nich losowości.

Bardzo prostym przykładem algorytmu zachłannego może być szukanie najwyższego punktu na określonym obszarze poprzez przesuwanie się zawsze w kierunku największego nachylenia (nigdy się nie cofając ani nie rozpatrując kilku wariantów drogi). Jak widać, w ten sposób prawdopodobnie dojdziemy do wierzchołka położonego najbliżej od punktu początkowego, który niekoniecznie będzie najwyższym.

→ Czytaj całość

Sortowanie przez scalanie – rekurencyjny algorytm sortowania wykorzystujący metodę dziel i zwyciężaj.

→ Czytaj całość

Algorytm memetyczny – algorytm będący połączeniem algorytmu genetycznego i metod lokalnej optymalizacji. Czasami określany również jako hybrydowy algorytm ewolucyjny.

→ Czytaj całość
Polityka prywatnościKontakt