Problem wydawania reszty (algorytm zachłanny)

Algorytm zachłanny wydawania reszty (1) Przykład rozwiązania problemu wydawania reszty za pomocą algorytmu zachłannego. Jak widać, rozwiązanie znalezione przez algorytm nie jest rozwiązaniem optymalnym
REKLAMA

Generatywna sztuczna inteligencja z ChatGPT i modelami OpenAI. Podnieś swoją produktywność i innowacyjność za pomocą GPT3 i GPT4
−35%51,35 zł
Algorytmy
−35%44,85 zł

Ten artykuł opisuje algorytm zachłanny rozwiązujący problem wydawania reszty. Algorytm ten polega na wybieraniu zawsze największej dostępnej monety, tzn. takiej, która nie jest większa od kwoty pozostałej do wydania.

Algorytm nie zawsze znajduje rozwiązanie optymalne. Przykładowo, dla zbioru nominałów {1, 3, 4} i kwoty 6 algorytm użyje najpierw monety o nominale 4 (pozostaje do wydania kwota 2), potem monety o nominale 1 (pozostaje kwota 1) i jeszcze raz monety o nominale 1. Łącznie algorytm użyje więc trzech monet, podczas gdy rozwiązanie optymalne wymaga użycia tylko dwóch (dwie monety o nominale 3).

Opis działania algorytmu

Dany jest posortowany rosnąco ciąg nominałów A=(c1, c2, …, cn) oraz kwota do wydania r. Algorytm działa następująco:

  1. Przypisujemy współczynnikom k1, k2, …, kn wartości 0.
  2. Dopóki r jest większe od zera:
    • Jeżeli r jest mniejsze od cn, zmniejszamy n o 1.
    • W przeciwnym razie zwiększamy wartość kn o 1 i zmniejszamy wartość r o cn.

Rozwiązania optymalne

Choć w przypadku ogólnym algorytm zachłanny nie daje rozwiązania optymalnego, to istnieją takie zbiory nominałów, dla których algorytm tę gwarancję daje. W pracy Combinatorics of the change-making problem (link w bibliografii) zaprezentowano metodę pozwalającą sprawdzić, czy dla danego ciągu nominałów algorytm zachłanny daje gwarancję znalezienia rozwiązania optymalnego niezależnie od wydawanej kwoty (takie ciągi nominałów w dalszej części artykułu będziemy określać jako „zachłanne”). Posortowany ciąg nominałów A=(c1, c2, …, cn) jest „zachłanny”, jeśli są spełnione następujące warunki:

  • Ciąg A′=(c1, c2, …, cn-1) jest „zachłanny”.
  • Liczba monet wyznaczona przez algorytm zachłanny dla ciągu nominałów A′ i kwoty mcn-1-cn jest mniejsza bądź równa m-1, gdzie wartość m to zaokrąglony w górę iloraz dwóch największych nominałów (cn/cn-1).

Dowód tego twierdzenia jest dostępny we wspomnianej pracy Combinatorics of the change-making problem. Znając powyższe warunki możemy sprawdzić kolejno zachłanność podciągów (c1, c2), (c1, c2, c3) aż do (c1, c2, …, cn).

Dla przykładu sprawdźmy, czy „zachłanny” jest ciąg nominałów (1, 2, 5, 10):

  • Jednoelementowy ciąg 1 musi być „zachłanny”, gdyż dla każdej kwoty istnieje tylko jedno rozwiązanie.
  • Dla ciągu (1, 2) wartość m wynosi 2. Kwota mcn-1-cn wynosi zatem 0. Algorytm zachłanny do wyznaczenia tej kwoty użyje 0 monet. 0 jest mniejsze niż 2-1, zatem ciąg jest „zachłanny”.
  • Dla ciągu (1, 2, 5) wartość m wynosi 3. Kwota mcn-1-cn wynosi zatem 1. Algorytm zachłanny do wyznaczenia tej kwoty użyje 1 monety. 1 jest mniejsze niż 3-1, zatem ciąg jest „zachłanny”.
  • Dla ciągu (1, 2, 5, 10) wartość m wynosi 2. Kwota mcn-1-cn wynosi zatem 0. Algorytm zachłanny do wyznaczenia tej kwoty użyje 0 monet. 0 jest mniejsze niż 2-1, zatem ciąg jest „zachłanny”.

Z tego twierdzenia wynikają też pewne bardziej ogólne wnioski. Zastanówmy się nad ciągami, w których każdy element ciągu jest wielokrotnością poprzedniego (kcn-1=cn, k > 0). Wówczas iloraz cn/cn-1 wynosi dokładnie k. Kwota mcn-1-cn wynosi wówczas 0. Do wydania kwoty 0 potrzeba 0 monet. 0 zawsze jest mniejsze bądź równe k-1. Podsumowując, jeśli w ciągu nominałów każdy element (poza pierwszym) jest wielokrotnością poprzedniego, to algorytm zachłanny będzie dawał rozwiązania optymalne.

Złożoność obliczeniowa

Dla kwoty 1 i n nominałów główna pętla programu wykona się n razy. Dla zbioru nominałów (1) i kwoty r pętla wykona się r razy. Można zatem powiedzieć, że złożoność czasowa algorytmu to O(n+r). Warto jednak zauważyć, że w praktyce algorytm może działać jeszcze szybciej – dla ustalonego r liczba wykonań pętli może wręcz maleć wraz ze wzrostem n, dopóki cn<r. Złożoność pamięciowa algorytmu jest stała (nie zależy od n ani r).

Bibliografia

  • A. Adamaszek, M. Adamaszek, Combinatorics of the change-making problem, European Journal of Combinatorics, Volume 31, Issue 1, 2010, s. 47-63, DOI: 10.1016/j.ejc.2009.05.002.
  • Z.J. Czech, S. Deorowicz, P. Fabian, Algorytmy i struktury danych. Wybrane zagadnienia, Wydawnictwo Politechniki Śląskiej, Gliwice, 2010, ISBN 9788373356689.
Ocena: -6 Tak Nie
Liczba głosów: 20.

Dodano: 6 października 2016 12:33, ostatnia edycja: 24 kwietnia 2020 20:24.

REKLAMA

Zobacz też

Metoda przyrostowa – technika projektowania algorytmów polegająca na dodawaniu do rozwiązania kolejnych elementów z danych wejściowych. Przykładem algorytmu opartego na tej metodzie jest sortowanie przez wstawianie, gdzie kolejne elementy są wstawiane do posortowanej części tablicy.

Jest to metoda prosta, jednak sprawdza się tylko dla niektórych problemów obliczeniowych.

→ Czytaj całość

Algorytm Dijkstry – algorytm służący do wyznaczania najkrótszych ścieżek w grafie. Wyznacza najkrótsze ścieżki z jednego wierzchołka (zwanego wierzchołkiem źródłowym) do pozostałych wierzchołków. Algorytm wymaga, aby wagi krawędzi grafu nie były ujemne. Autorem algorytmu jest holenderski naukowiec Edsger Dijkstra.

Algorytm realizuje podejście zachłanne. W każdej iteracji wybierany jest ten spośród nieodwiedzonych wierzchołków, do którego można dotrzeć najmniejszym kosztem. Po wyznaczeniu ścieżki do konkretnego wierzchołka nie zostanie ona zmodyfikowana w trakcie wykonywania dalszej części algorytmu.

→ Czytaj całość

Wyznaczanie maksymalnego przepływu – problem obliczeniowy polegający na wyznaczeniu maksymalnego przepływu w sieci przepływowej.

Sieć przepływowa jest skierowanym grafem prostym. Każdy łuk (krawędź skierowana w grafie) ma swoją nieujemną wagę, która oznacza maksymalny dopuszczalny przepływ w tym łuku. Na potrzeby tego artykułu nazwijmy rzeczy przepływające przez sieć danymi. Jeden z wierzchołków sieci jest źródłem, z którego wypływają przesyłane dane. Inny z wierzchołków to ujście, do którego te dane wpływają. Zakłada się ponadto, że dla każdego z pozostałych wierzchołków istnieje ścieżka ze źródła do ujścia przechodząca przez ten wierzchołek.

Przepływem w sieci nazywamy przyporządkowanie każdemu łukowi pewnej wartości, która oznacza liczbę danych aktualnie przesyłanych przez ten łuk. Wartości te muszą spełniać następujące warunki:

  • Wartość przyporządkowana krawędzi musi być mniejsza lub równa jej wadze (warunek przepustowości).
  • Do każdego wierzchołka (poza źródłem i ujściem) musi wpływać tyle samo danych, ile z niego wypływa (warunek zachowania przepływu).

Omawiany problem polega na dobraniu takiego przepływu, aby liczba danych wypływających ze źródła (i zarazem wpływających do ujścia) była jak największa.

→ Czytaj całość
Polityka prywatnościKontakt