Ten artykuł opisuje algorytm zachłanny rozwiązujący problem wydawania reszty. Algorytm ten polega na wybieraniu zawsze największej dostępnej monety, tzn. takiej, która nie jest większa od kwoty pozostałej do wydania.
Algorytm nie zawsze znajduje rozwiązanie optymalne. Przykładowo, dla zbioru nominałów {1, 3, 4} i kwoty 6 algorytm użyje najpierw monety o nominale 4 (pozostaje do wydania kwota 2), potem monety o nominale 1 (pozostaje kwota 1) i jeszcze raz monety o nominale 1. Łącznie algorytm użyje więc trzech monet, podczas gdy rozwiązanie optymalne wymaga użycia tylko dwóch (dwie monety o nominale 3).
Dany jest posortowany rosnąco ciąg nominałów A=(c1, c2, …, cn) oraz kwota do wydania r. Algorytm działa następująco:
Choć w przypadku ogólnym algorytm zachłanny nie daje rozwiązania optymalnego, to istnieją takie zbiory nominałów, dla których algorytm tę gwarancję daje. W pracy Combinatorics of the change-making problem (link w bibliografii) zaprezentowano metodę pozwalającą sprawdzić, czy dla danego ciągu nominałów algorytm zachłanny daje gwarancję znalezienia rozwiązania optymalnego niezależnie od wydawanej kwoty (takie ciągi nominałów w dalszej części artykułu będziemy określać jako „zachłanne”). Posortowany ciąg nominałów A=(c1, c2, …, cn) jest „zachłanny”, jeśli są spełnione następujące warunki:
Dowód tego twierdzenia jest dostępny we wspomnianej pracy Combinatorics of the change-making problem. Znając powyższe warunki możemy sprawdzić kolejno zachłanność podciągów (c1, c2), (c1, c2, c3) aż do (c1, c2, …, cn).
Dla przykładu sprawdźmy, czy „zachłanny” jest ciąg nominałów (1, 2, 5, 10):
Z tego twierdzenia wynikają też pewne bardziej ogólne wnioski. Zastanówmy się nad ciągami, w których każdy element ciągu jest wielokrotnością poprzedniego (kcn-1=cn, k > 0). Wówczas iloraz cn/cn-1 wynosi dokładnie k. Kwota mcn-1-cn wynosi wówczas 0. Do wydania kwoty 0 potrzeba 0 monet. 0 zawsze jest mniejsze bądź równe k-1. Podsumowując, jeśli w ciągu nominałów każdy element (poza pierwszym) jest wielokrotnością poprzedniego, to algorytm zachłanny będzie dawał rozwiązania optymalne.
Dla kwoty 1 i n nominałów główna pętla programu wykona się n razy. Dla zbioru nominałów (1) i kwoty r pętla wykona się r razy. Można zatem powiedzieć, że złożoność czasowa algorytmu to O(n+r). Warto jednak zauważyć, że w praktyce algorytm może działać jeszcze szybciej – dla ustalonego r liczba wykonań pętli może wręcz maleć wraz ze wzrostem n, dopóki cn<r. Złożoność pamięciowa algorytmu jest stała (nie zależy od n ani r).
Dodano: 6 października 2016 12:33, ostatnia edycja: 24 kwietnia 2020 20:24.
Metoda Forda-Fulkersona – algorytm służący do wyznaczania maksymalnego przepływu. Jest to algorytm bardzo ogólny, dlatego często nie jest nazywany algorytmem, a metodą. Popularną implementacją tej metody jest algorytm Edmondsa-Karpa. Algorytm można opisać następująco:
Minimalne drzewo rozpinające (ang. minimum spanning tree, w skrócie MST), inaczej drzewo rozpinające o minimalnej wadze – drzewo łączące wszystkie wierzchołki pewnego grafu spójnego mające najmniejszą możliwą sumę wag krawędzi.
Jeśli graf ma v wierzchołków, to jego drzewo rozpinające zawsze będzie miało v-1 krawędzi. Jeśli ten graf ma e krawędzi, aby utworzyć drzewo rozpinające, trzeba usunąć z grafu e-v+1 krawędzi. Liczba ta jest określana jako liczba cyklomatryczna.
Programowanie dynamiczne – technika projektowania algorytmów polegająca na rozwiązywaniu podproblemów i zapamiętywaniu ich wyników. W technice tej, podobnie jak w metodzie dziel i zwyciężaj, problem dzielony jest na mniejsze podproblemy. Wyniki rozwiązywania podproblemów są jednak zapisywane w tabeli, dzięki czemu w przypadku natrafienia na ten sam podproblem nie trzeba go ponownie rozwiązywać.
Wykorzystując programowanie dynamiczne można zastosować metodę zstępującą z zapamiętywaniem lub metodę wstępującą.