Algorytm memetyczny – algorytm będący połączeniem algorytmu genetycznego i metod lokalnej optymalizacji. Czasami określany również jako hybrydowy algorytm ewolucyjny.
W algorytmie genetycznym zadanie w ogóle nie jest rozwiązywane w sposób analityczny – liczymy, że mechanizmy ewolucji same znajdą dobre rozwiązanie. W przypadku algorytmów memetycznych wzbogacamy to podejście o pewne elementy analityczne.
Algorytm memetyczny oprócz operacji krzyżowania, mutacji i selekcji ma również operację lokalnej optymalizacji. Celem tej operacji jest zmodyfikowanie osobnika populacji tak, aby osiągnąć lepsze rozwiązanie. Do modyfikacji tej wykorzystuje się wiedzę specjalistyczną dla danego zagadnienia.
Załóżmy, że mamy algorytm genetyczny służący do rozwiązywania problemu komiwojażera (możemy przyjąć, że został zaimplementowany tak, jak w samouczku zamieszczonym na naszej stronie). Aby zrobić na jego podstawie algorytm memetyczny, musimy zaimplementować operację lokalnej optymalizacji. Operacja ta będzie umieszczona między krzyżowaniem a selekcją.
Jako operację lokalnej optymalizacji możemy przyjąć algorytm 2-optymalny. Algorytm ten polega na usunięciu z cyklu dwóch krawędzi i zastąpieniu ich innymi krawędziami (tak, aby nadal był prawidłowy cykl). Dla n wierzchołków mamy złożoność obliczeniową o(n2). Po sprawdzeniu wszystkich par krawędzi wybieramy tę zamianę, która powoduje największe skrócenie trasy. Jeśli żadna z modyfikacji nie spowodowała skrócenia trasy, zostawiamy rozwiązanie pierwotne.
Elementy analityczne można również wprowadzić do generowania populacji początkowej. Oprócz rozwiązań zupełnie losowych, mogą się tam znaleźć rozwiązania wyznaczone za pomocą prostego algorytmu heurystycznego, jak np. algorytm najbliższego sąsiada.
Dodano: 3 czerwca 2017 11:15, ostatnia edycja: 1 maja 2020 16:13.
Metoda przyrostowa – technika projektowania algorytmów polegająca na dodawaniu do rozwiązania kolejnych elementów z danych wejściowych. Przykładem algorytmu opartego na tej metodzie jest sortowanie przez wstawianie, gdzie kolejne elementy są wstawiane do posortowanej części tablicy.
Jest to metoda prosta, jednak sprawdza się tylko dla niektórych problemów obliczeniowych.
Rekurencja (inaczej rekursja) – odwołanie się funkcji lub definicji do samej siebie. Mówiąc inaczej, podejście rekurencyjne polega na tym, że rozwiązanie problemu wyraża się za pomocą rozwiązania tego samego problemu dla mniejszych danych wejściowych. Stosowanie rekurencji jest charakterystyczne dla algorytmów projektowanych metodą dziel i zwyciężaj.
Typowym problemem, dla którego można zastosować rekurencję, jest obliczanie silni. Przypomnijmy, że silnia z n jest zdefiniowana jako n!=1×2×…×n. Funkcja ta może być równoważnie zapisana jako:
n!=(n−1)!×n, dla n>0,
n!=1, dla n=0.
W powyższym przykładzie górny wiersz jest ogólnym równaniem rekurencji, zaś dolny wiersz jest wartością brzegową. W języku C++ powyższa funkcja byłaby zapisana w poniższy sposób.
int silnia(int n) { if (n > 0) { return n * silnia(n-1); } else { return 1; } };
Przekształcenie postaci rekurencyjnej funkcji do postaci zwartej (tzn. takiej, która nie zawiera odwołania do samej siebie) jest określane jako rozwiązanie rekurencji. Metody rozwiązywania rekurencji są dostępne między innymi w książkach podanych w bibliografii.
Algorytmy stosujące rekurencję są zazwyczaj proste w implementacji. Jednocześnie wiążą się one z pewnymi problemami. Przy podejściu rekurencyjnym ta sama funkcja jest wywoływana wielokrotnie, co zużywa pamięć operacyjną (w skrajnych przypadkach może to spowodować przepełnienie stosu).
Wyznaczanie maksymalnego przepływu – problem obliczeniowy polegający na wyznaczeniu maksymalnego przepływu w sieci przepływowej.
Sieć przepływowa jest skierowanym grafem prostym. Każdy łuk (krawędź skierowana w grafie) ma swoją nieujemną wagę, która oznacza maksymalny dopuszczalny przepływ w tym łuku. Na potrzeby tego artykułu nazwijmy rzeczy przepływające przez sieć danymi. Jeden z wierzchołków sieci jest źródłem, z którego wypływają przesyłane dane. Inny z wierzchołków to ujście, do którego te dane wpływają. Zakłada się ponadto, że dla każdego z pozostałych wierzchołków istnieje ścieżka ze źródła do ujścia przechodząca przez ten wierzchołek.
Przepływem w sieci nazywamy przyporządkowanie każdemu łukowi pewnej wartości, która oznacza liczbę danych aktualnie przesyłanych przez ten łuk. Wartości te muszą spełniać następujące warunki:
Omawiany problem polega na dobraniu takiego przepływu, aby liczba danych wypływających ze źródła (i zarazem wpływających do ujścia) była jak największa.