Algorytmy memetyczne

Algorytm memetyczny, schemat blokowy (1) Schemat blokowy algorytmu memetycznego
2-opt przykład (2) Przykład optymalizacji lokalnej z użyciem algorytmu 2-optymalnego

Algorytm memetyczny – algorytm będący połączeniem algorytmu genetycznego i metod lokalnej optymalizacji. Czasami określany również jako hybrydowy algorytm ewolucyjny.

Różnice między algorytmem genetycznym a memetycznym

W algorytmie genetycznym zadanie w ogóle nie jest rozwiązywane w sposób analityczny – liczymy, że mechanizmy ewolucji same znajdą dobre rozwiązanie. W przypadku algorytmów memetycznych wzbogacamy to podejście o elementy analityczne.

Algorytm memetyczny oprócz operacji krzyżowania, mutacji i selekcji ma również operację lokalnej optymalizacji. Celem tej operacji jest zmodyfikowanie osobnika populacji tak, aby osiągnąć lepsze rozwiązanie. Do modyfikacji tej wykorzystuje się wiedzę specjalistyczną dla danego zagadnienia.

Przykład

Załóżmy, że mamy algorytm genetyczny służący do rozwiązywania problemu komiwojażera (możemy przyjąć, że został zaimplementowany tak, jak w samouczku zamieszczonym na naszej stronie). Aby zrobić na jego podstawie algorytm memetyczny, musimy zaimplementować operację lokalnej optymalizacji. Operacja ta będzie umieszczona między krzyżowaniem a selekcją.

Jako operację lokalnej optymalizacji możemy przyjąć algorytm 2-optymalny. Algorytm ten polega na usunięciu z cyklu dwóch krawędzi i zastąpieniu ich innymi krawędziami (tak, aby nadal był prawidłowy cykl). Dla n wierzchołków mamy złożoność obliczeniową o(n2). Po sprawdzeniu wszystkich par krawędzi wybieramy tę zamianę, która powoduje największe skrócenie trasy. Jeśli żadna z modyfikacji nie spowodowała skrócenia trasy, zostawiamy rozwiązanie pierwotne.

Istnieją również algorytmy 3-optymalne i większe. W ogólnym przypadku tego typu algorytm lokalnej optymalizacji jest określany jako algorytm k-optymalny.

Bibliografia

Ocena: 0 Tak Nie
Liczba głosów: 0.

Dodano: 3 czerwca 2017 11:15, ostatnia edycja: 30 stycznia 2019 15:47.

REKLAMA

Zobacz też

Sortowanie – zagadnienie polegające na uporządkowaniu elementów zbioru rosnąco lub malejąco według pewnego klucza. Zagadnienie to, ze względu na częstość występowania, jest bardzo istotne dla informatyki. Istnieje wiele różnych algorytmów realizujących sortowanie.

→ Czytaj całość

Notacja dużego O – notacja przedstawiająca asymptotyczne tempo wzrostu, wykorzystywana do zapisywania złożoności obliczeniowej algorytmu. Za pomocą tej notacji zapisywany jest rząd wielkości funkcji wyrażającej liczbę operacji dominujących (w przypadku złożoności czasowej) lub rozmiar wymaganej pamięci (w przypadku złożoności pamięciowej) w zależności od liczby danych wejściowych.

Wykorzystując notację dużego O nie podajemy dokładnego wzoru funkcji, a jedynie jej najbardziej znaczący składnik, w dodatku z pominięciem stałego współczynnika. Przykładowo, funkcję postaci f(n)=5n2+20n+100 możemy zapisać jako O(n2). Zakładamy bowiem, że dla dostatecznie dużych n wpływ pomijanych elementów jest znikomy. Choć oczywiście dla małych n może się zdarzyć, że funkcja o gorszej złożoności będzie się wykonywała szybciej.

Weźmy dla przykładu funkcje f(n) = 1000n+2000 i g(n) = n2. Choć pierwsza funkcja ma pozornie bardzo duże stałe współczynniki, to dla n ≥ 1002 będzie ona przyjmowała wartości mniejsze. Im większe n, tym ta różnica będzie wyraźniejsza. Dla n = 10000 (w przypadku danych przetwarzanych komputerowo nie jest to wielka wartość) f(n) = 10002000 (ok. 10 mln), a g(n) = 100000000 (100 mln), czyli blisko 10 razy więcej.

Możliwe jest również wykorzystanie notacji dużego O dla funkcji wielu zmiennych. Wówczas zapis może wyglądać tak: O(v2e). Znajduje to zastosowanie np. dla algorytmów operujących na grafach, gdzie złożoność zależy zarówno od liczby wierzchołków, jak i liczby krawędzi w grafie.

→ Czytaj całość

Algorytmy zachłanne (ang. greedy algorithms) – algorytmy podejmujące w każdym kroku taką decyzję, która w danej chwili wydaje się najkorzystniejsza. Inaczej mówiąc, algorytmy zachłanne dokonują zawsze wyborów lokalnie optymalnych licząc, że doprowadzi to do znalezienia rozwiązania globalnie optymalnego. W ogólnym przypadku algorytmy zachłanne nie zawsze znajdują rozwiązanie optymalne. Są one zatem podzbiorem algorytmów heurystycznych. Jednocześnie są to algorytmy deterministyczne – nie ma w nich losowości.

Bardzo prostym przykładem algorytmu zachłannego może być szukanie najwyższego punktu na określonym obszarze poprzez przesuwanie się zawsze w kierunku największego nachylenia (nigdy się nie cofając ani nie rozpatrując kilku wariantów drogi). Jak widać, w ten sposób prawdopodobnie dojdziemy do wierzchołka położonego najbliżej od punktu początkowego, który niekoniecznie będzie najwyższym.

→ Czytaj całość
Polityka prywatnościKontakt