Algorytmy i struktury danych z przykładami w Delphi
80,00 zł
Systemy operacyjne. Architektura, funkcjonowanie i projektowanie. Wydanie IX
−30%90,30 zł
Algorytmy. Ilustrowany przewodnik
54,90 zł
Młodzi giganci programowania. Scratch
34,90 zł
Czysty kod. Podręcznik dobrego programisty
69,00 zł
Java. Podstawy. Wydanie X
99,00 zł

Algorytmy memetyczne

Algorytm memetyczny, schemat blokowy Schemat blokowy algorytmu memetycznego
2-opt przykład Przykład optymalizacji lokalnej z użyciem algorytmu 2-optymalnego

Algorytm memetyczny – algorytm będący połączeniem algorytmu genetycznego i metod lokalnej optymalizacji. Czasami określany również jako hybrydowy algorytm ewolucyjny.

Różnice między algorytmem genetycznym a memetycznym

W algorytmie genetycznym zadanie w ogóle nie jest rozwiązywane w sposób analityczny – liczymy, że mechanizmy ewolucji same znajdą dobre rozwiązanie. W przypadku algorytmów memetycznych wzbogacamy to podejście o elementy analityczne.

Algorytm memetyczny oprócz operacji krzyżowania, mutacji i selekcji ma również operację lokalnej optymalizacji. Celem tej operacji jest zmodyfikowanie osobnika populacji tak, aby osiągnąć lepsze rozwiązanie. Do modyfikacji tej wykorzystuje się wiedzę specjalistyczną dla danego zagadnienia.

Przykład

Załóżmy, że mamy algorytm genetyczny służący do rozwiązywania problemu komiwojażera (możemy przyjąć, że został zaimplementowany tak, jak w samouczku zamieszczonym na naszej stronie). Aby zrobić na jego podstawie algorytm memetyczny, musimy zaimplementować operację lokalnej optymalizacji. Operacja ta będzie umieszczona między krzyżowaniem a selekcją.

Jako operację lokalnej optymalizacji możemy przyjąć algorytm 2-optymalny. Algorytm ten polega na usunięciu z cyklu dwóch krawędzi i zastąpieniu ich innymi krawędziami (tak, aby nadal był prawidłowy cykl). Dla n wierzchołków mamy złożoność obliczeniową o(n2). Po sprawdzeniu wszystkich par krawędzi wybieramy tę zamianę, która powoduje największe skrócenie trasy. Jeśli żadna z modyfikacji nie spowodowała skrócenia trasy, zostawiamy rozwiązanie pierwotne.

Istnieją również algorytmy 3-optymalne i większe. W ogólnym przypadku tego typu algorytm lokalnej optymalizacji jest określany jako algorytm k-optymalny.

Bibliografia

  1. Yew-Soon Ong, Meng-Hiot Lim, Ning Zhu, Kok-Wai Wong, Classification of Adaptive Memetic Algorithms: A Comparative Study.
  2. D.S. Johnson, L.A. McGeoch, The Traveling Salesman Problem: A Case Study in Local Optimization (link) [dostęp: 3 czerwca 2017].
Ocena: 0 Tak Nie
Liczba głosów: 0.

Dodano: 3 czerwca 2017 11:15, ostatnia edycja: 26 czerwca 2017 18:50.

REKLAMA

Zobacz też

Graf – struktura składająca się ze zbioru wierzchołków oraz zbioru krawędzi. Grafy mają szerokie zastosowanie w informatyce, można za ich pomocą przedstawić wiele zagadnień.

Wyróżniamy grafy nieskierowane oraz grafy skierowane. W grafie nieskierowanym relacja sąsiedztwa jest symetryczna, tzn. krawędź łączy wierzchołki „w obie strony”. W grafie skierowanym krawędzie są „jednokierunkowe”. Krawędź grafu skierowanego zazwyczaj jest określana jako łuk.

Graf ważony (inaczej graf z wagami) to taki graf, w którym każdej krawędzi przypisana jest pewna wartość liczbowa. Wartość ta może oznaczać np. długość krawędzi lub jej przepustowość.

→ Czytaj całość
Sortowanie bąbelkowe (ang. bubble sort) – prosty algorytm sortowania polegający na porównywaniu za sobą sąsiednich elementów. Złożoności czasowa algorytmu wynosi O(n2).
→ Czytaj całość

Metoda przyrostowa – technika projektowania algorytmów polegająca na dodawaniu do rozwiązania kolejnych elementów z danych wejściowych. Przykładem algorytmu opartego na tej metodzie jest sortowanie przez wstawianie, gdzie kolejne elementy są wstawiane do posortowanej części tablicy.

Jest to metoda prosta, jednak sprawdza się tylko dla niektórych problemów obliczeniowych.

→ Czytaj całość
Polityka prywatnościKontakt