Programowanie w języku C. Ćwiczenia praktyczne. Wydanie II
19,90 zł
Badanie UX. Praktyczne techniki projektowania bezkonkurencyjnych produktów
−30%34,30 zł
Algorytmy bez tajemnic
44,90 zł
Czysta architektura. Struktura i design oprogramowania. Przewodnik dla profesjonalistów
67,00 zł
Python. Uczenie maszynowe
69,00 zł
Android Studio. Tworzenie aplikacji mobilnych
69,00 zł

Algorytmy memetyczne

Algorytm memetyczny, schemat blokowy Schemat blokowy algorytmu memetycznego
2-opt przykład Przykład optymalizacji lokalnej z użyciem algorytmu 2-optymalnego

Algorytm memetyczny – algorytm będący połączeniem algorytmu genetycznego i metod lokalnej optymalizacji. Czasami określany również jako hybrydowy algorytm ewolucyjny.

Różnice między algorytmem genetycznym a memetycznym

W algorytmie genetycznym zadanie w ogóle nie jest rozwiązywane w sposób analityczny – liczymy, że mechanizmy ewolucji same znajdą dobre rozwiązanie. W przypadku algorytmów memetycznych wzbogacamy to podejście o elementy analityczne.

Algorytm memetyczny oprócz operacji krzyżowania, mutacji i selekcji ma również operację lokalnej optymalizacji. Celem tej operacji jest zmodyfikowanie osobnika populacji tak, aby osiągnąć lepsze rozwiązanie. Do modyfikacji tej wykorzystuje się wiedzę specjalistyczną dla danego zagadnienia.

Przykład

Załóżmy, że mamy algorytm genetyczny służący do rozwiązywania problemu komiwojażera (możemy przyjąć, że został zaimplementowany tak, jak w samouczku zamieszczonym na naszej stronie). Aby zrobić na jego podstawie algorytm memetyczny, musimy zaimplementować operację lokalnej optymalizacji. Operacja ta będzie umieszczona między krzyżowaniem a selekcją.

Jako operację lokalnej optymalizacji możemy przyjąć algorytm 2-optymalny. Algorytm ten polega na usunięciu z cyklu dwóch krawędzi i zastąpieniu ich innymi krawędziami (tak, aby nadal był prawidłowy cykl). Dla n wierzchołków mamy złożoność obliczeniową o(n2). Po sprawdzeniu wszystkich par krawędzi wybieramy tę zamianę, która powoduje największe skrócenie trasy. Jeśli żadna z modyfikacji nie spowodowała skrócenia trasy, zostawiamy rozwiązanie pierwotne.

Istnieją również algorytmy 3-optymalne i większe. W ogólnym przypadku tego typu algorytm lokalnej optymalizacji jest określany jako algorytm k-optymalny.

Bibliografia

  1. Yew-Soon Ong, Meng-Hiot Lim, Ning Zhu, Kok-Wai Wong, Classification of Adaptive Memetic Algorithms: A Comparative Study.
  2. D.S. Johnson, L.A. McGeoch, The Traveling Salesman Problem: A Case Study in Local Optimization (link) [dostęp: 3 czerwca 2017].
Ocena: 0 Tak Nie
Liczba głosów: 0.

Dodano: 3 czerwca 2017 11:15, ostatnia edycja: 26 czerwca 2017 18:50.

Zobacz też

Algorytm Bellmana-Forda – algorytm służący do wyznaczania najkrótszych ścieżek w grafie. Wyznacza najkrótsze ścieżki z jednego wierzchołka (zwanego wierzchołkiem źródłowym) do pozostałych wierzchołków. W odróżnieniu od algorytmu Dijkstry, algorytm Bellmana-Forda dopuszcza krawędzie o ujemnych wagach, nie mogą istnieć jednak ujemne cykle osiągalne z wierzchołka źródłowego. Algorytm może być również wykorzystywany do sprawdzania, czy w grafie występują ujemne cykle.

Algorytm występuje również pod nazwą algorytm Bellmana-Forda-Moore’a.

→ Czytaj całość

Algorytm Floyda-Warshalla – algorytm służący do wyznaczania najkrótszych ścieżek pomiędzy każdą parą wierzchołków w grafie. Jest to algorytm oparty na programowaniu dynamicznym. Algorytm ma złożoność czasową O(n3) i złożoność pamięciową O(n2), gdzie n jest liczbą wierzchołków.

Algorytm dopuszcza krawędzie o ujemnych wagach, o ile nie tworzą ujemnych cykli. Algorytm może być również wykorzystywany do wyszukiwania ujemnych cykli w grafie.

→ Czytaj całość

Przeszukiwanie w głąb (ang. depth-first search, w skrócie DFS) – jeden z dwóch podstawowych algorytmów przeszukiwania grafu. Polega na przechodzeniu zawsze do kolejnego nieodwiedzonego wierzchołka. Jeśli dany wierzchołek nie ma nieodwiedzonych sąsiadów, wracamy do poprzedniego wierzchołka i sprawdzamy jego sąsiadów. Mówiąc obrazowo, w algorytmie tym wchodzimy tak głęboko, jak to możliwe (przechodzimy dalej, dopóki się da).

Algorytm można zapisać w sposób rekurencyjny. Wywoływana rekurencyjnie procedura działa następująco: oznacz wierzchołek jako odwiedzony, a następnie wywołaj tę procedurę dla każdego sąsiada danego wierzchołka, jeśli nie został on wcześniej odwiedzony. Na początku wywołujemy procedurę dla wierzchołka początkowego.

→ Czytaj całość
Polityka prywatnościKontakt