Algorytmy, struktury danych i techniki programowania. Wydanie V
49,00 zł
JavaScript. Wyrażenia regularne dla programistów
−30%34,30 zł
Opus magnum C++11. Programowanie w języku C++ (komplet)
149,00 zł
Kwalifikacja EE.08. Montaż i eksploatacja systemów komputerowych, urządzeń peryferyjnych i sieci. Część 2. Systemy operacyjne. Podręcznik do nauki zawodu technik informatyk
37,95 zł
Hartowanie Linuksa we wrogich środowiskach sieciowych. Ochrona serwera od TLS po Tor
59,00 zł
Zajęcia rewalidacyjne. Zeszyt ćwiczeń dla szkoły podstawowej, klasy 4-6
14,90 zł

Kategoria: Kategoria główna

Podkategorie:

Zobacz też

Algorytm najmniejszej krawędzi – algorytm służący do rozwiązywania problemu komiwojażera. Jest to algorytm wykorzystujący strategię zachłanną, jednak w inny sposób, niż algorytm najbliższego sąsiada. W anglojęzycznej literaturze algorytm jest najczęściej określany po prostu jako greedy algorithm (algorytm zachłanny), w skrócie GR.
→ Czytaj całość

Algorytm Edmondsa-Karpa – algorytm wyszukiwania maksymalnego przepływu w sieci przepływowej. Jest to przypadek szczególny algorytmu Forda-Fulkersona.

W algorytmie Edmondsa-Karpa ścieżka powiększająca wyznaczana jest za pomocą przeszukiwania grafu wszerz. Dzięki temu w każdej iteracji algorytmu dołączana jest zawsze najkrótsza (pod względem liczby krawędzi) ścieżka powiększająca. W metodzie Forda-Fulkersona sposób wyznaczania ścieżki powiększającej jest dowolny.

→ Czytaj całość

Algorytm Helda-Karpa (czasami określany jako algorytm Bellmana-Helda-Karpa) – algorytm służący do rozwiązywania problemu komiwojażera. Jest to algorytm dokładny oparty na programowaniu dynamicznym. Algorytm ma złożoność czasową O(n22n) i złożoność pamięciową O(n2n). Jest to co prawda złożoność gorsza od wielomianowej, ale algorytm ten jest znacznie lepszy od algorytmu sprawdzającego wszystkie warianty (złożoność czasowa O(n!)).

→ Czytaj całość
Polityka prywatnościKontakt