PHP 7. Algorytmy i struktury danych
59,00 zł
Systemy operacyjne. Architektura, funkcjonowanie i projektowanie. Wydanie IX
−30%90,30 zł
Thinking in Java. Edycja polska. Wydanie IV
149,00 zł
Czysta architektura. Struktura i design oprogramowania. Przewodnik dla profesjonalistów
67,00 zł
Kwalifikacja EE.08. Montaż i eksploatacja systemów komputerowych, urządzeń peryferyjnych i sieci. Część 3. Projektowanie i wykonywanie lokalnych sieci komputerowych. Podręcznik do nauki zawodu technik informatyk
37,95 zł
Linux. Komendy i polecenia. Wydanie V
24,90 zł

Tutorial: Problem wydawania reszty, programowanie dynamiczne

REKLAMA
Aby korzystać z tej strony musisz mieć włączoną obsługę JavaScript.
Ocena: +1 Tak Nie
Liczba głosów: 1.

Tutorial pokazujący krok po kroku, jak rozwiązać problem wydawania reszty za pomocą algorytmu wykorzystującego programowanie dynamiczne. Ten samouczek jest powiązany tematycznie z artykułem „Problem wydawania reszty (programowanie dynamiczne)”.

Dodano: 27 lutego 2017 17:11.

Zobacz też wszystkie nasze tutoriale!
REKLAMA

Zobacz też

K-opt, algorytm k-optymalny – algorytm lokalnej optymalizacji wykorzystywany przy rozwiązywaniu problemu komiwojażera. Algorytm ten nie służy do samego wyznaczania trasy, a jedynie do ulepszania jej. Najprostszą wersją tego algorytmu jest algorytm 2-optymalny.

→ Czytaj całość
Algorytm najmniejszej krawędzi – algorytm służący do rozwiązywania problemu komiwojażera. Jest to algorytm wykorzystujący strategię zachłanną, jednak w inny sposób, niż algorytm najbliższego sąsiada. W anglojęzycznej literaturze algorytm jest najczęściej określany po prostu jako greedy algorithm (algorytm zachłanny), w skrócie GR.
→ Czytaj całość

Algorytm Dijkstry – algorytm służący do wyznaczania najkrótszych ścieżek w grafie. Wyznacza najkrótsze ścieżki z jednego wierzchołka (zwanego wierzchołkiem źródłowym) do pozostałych wierzchołków. Algorytm wymaga, aby wagi krawędzi grafu nie były ujemne. Autorem algorytmu jest holenderski naukowiec Edsger Dijkstra.

Algorytm realizuje podejście zachłanne. W każdej iteracji wybierany jest ten spośród nieodwiedzonych wierzchołków, do którego można dotrzeć najmniejszym kosztem. Po wyznaczeniu ścieżki do konkretnego wierzchołka nie zostanie ona zmodyfikowana w trakcie wykonywania dalszej części algorytmu.

→ Czytaj całość
Polityka prywatnościKontakt