Algorytmy
49,00 zł
Nowoczesne receptury w Javie. Proste rozwiązania trudnych problemów
−30%38,43 zł
Wprowadzenie do obliczeń równoległych
−16%49,45 zł
Informatyka Europejczyka. Podręcznik dla szkoły podstawowej. Klasa 8
9,90 zł
Python. Uczenie maszynowe
69,00 zł
TDD. Techniki programowania sterowanego testami
59,00 zł

Plik: 2-opt przykład

Wykonanie algorytmu 2-opt na przykładowym rozwiązaniu problemu komiwojażera.

Dodano: 3 czerwca 2017 13:51.

Wykorzystanie pliku w artykułach:

Zobacz też

Minimalne drzewo rozpinające (ang. minimum spanning tree, w skrócie MST), inaczej drzewo rozpinające o minimalnej wadze – drzewo łączące wszystkie wierzchołki pewnego grafu spójnego mające najmniejszą możliwą sumę wag krawędzi.

Jeśli graf ma v wierzchołków, to jego drzewo rozpinające zawsze będzie miało v-1 krawędzi. Jeśli ten graf ma e krawędzi, aby utworzyć drzewo rozpinające, trzeba usunąć z grafu e-v+1 krawędzi. Liczba ta jest określana jako liczba cyklomatryczna.

→ Czytaj całość
Algorytm najbliższego sąsiada (ang. nearest neighbour algorithm, w skrócie NN) – algorytm służący do rozwiązywania problemu komiwojażera. Jest to algorytm wykorzystujący strategię zachłanną.
→ Czytaj całość

Wyznaczanie najkrótszej ścieżki – zagadnienie polegające na wyszkaniu w grafie takiej ścieżki łączącej dwa wierzchołki, której suma wag krawędzi jest jak najmniejsza.

W przypadku pesymistycznym do wyznaczenia optymalnej ścieżki z wierzchołka A do wierzchołka B konieczne jest wyznaczenie najkrótszych ścieżek z wierzchołka A do wszystkich pozostałych wierzchołków w grafie. Zagadnienie takie jest określane jako poszukiwanie najkrótszych ścieżek z jednego źródła. Do rozwiązywania tego zagadnienia można wykorzystać następujące algorytmy:

Nieco innym zagadnieniem jest poszukiwanie najkrótszych ścieżek pomiędzy każdą parą wierzchołków. W tym celu można wykorzystać algorytmy wymienione powyżej (wykonując je wielokrotnie, za każdym razem przyjmując inny wierzchołek źródłowy) lub algorytmy poszukujące od razu wszystkich ścieżek, takie jak:

Aby znalezienie najkrótszej ścieżki było możliwe, graf nie może zawierać ujemnych cykli osiągalnych z wierzchołka źródłowego. Jeśli taki cykl istnieje, to poruszając się nim „w kółko” cały czas zmniejszamy długość ścieżki. Dopuszczalne jest natomiast występowanie krawędzi o ujemnej wadze, choć nie wszystkie algorytmy dopuszczają ten przypadek.

Jeśli poszukujemy ścieżek o najmniejszej liczbie krawędzi (np. wtedy, gdy wszystkie krawędzie mają taką samą, dodatnią wagę), to zamiast powyższych algorytmów możemy skorzystać z prostego przeszukiwania grafu wszerz.

→ Czytaj całość
Polityka prywatnościKontakt